首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   18篇
  国内免费   1篇
化学   104篇
物理学   1篇
无线电   13篇
  2022年   2篇
  2021年   1篇
  2020年   7篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   4篇
  2013年   14篇
  2012年   6篇
  2011年   7篇
  2010年   12篇
  2009年   6篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  1999年   1篇
  1995年   2篇
排序方式: 共有118条查询结果,搜索用时 265 毫秒
1.
2.
Synthesis of thiophene-based [7]helicenes, which are functionalized for both design of organic chiral glasses with strong chiroptical properties and for further homologation to higher [n]helicenes, is reported. The key synthetic transformations are kinetic resolution of the intermediate diketone and the annelation step forming the center benzene ring by means of an intramolecular McMurry reaction. Based upon X-ray crystallographic determinations of the absolute configurations for (+)-enantiomers of the diketone and the [7]helicene, stereochemical correlation between the (R) axial chirality of the diketone and the (M) helical chirality of the [7]helicene is established. One such enantiopure trimethylsilyl-substituted [7]helicene possesses enchanced chiroptical properties and forms a chiral molecular glass.  相似文献   
3.
Novel carboxylated oligothiophenes with different thiophene units were designed and synthesized as photosensitizers in dye-sensitized solar cells (DSSCs) for efficient opto-electric materials. The introduction of -COOH into thiophene molecules can lead to a red shift of UV-visible absorption, increase light-harvesting efficiency, and enhance photoinduced charge transport by forming efficient covalent bonds to the substrate surface. A red shift of the absorption spectrum of oligothiophene is also achieved by the increase in the number of thiophene units. The DSSCs based on the oligomers have excellent photovoltaic performances. Under 100 mW cm(-2) irradiation a short-circuit current of 10.57 mA cm(-2) and an overall energy conversion efficiency of 3.36 % is achieved when pentathiophene dicarboxylated acid was used as a sensitizer. The incident photo-to-current conversion efficiency (IPCE) has a maximum as high as 80 %. In addition, photovoltage and photocurrent transients show that slow charge recombination in DSSCs is important for efficient charge separation and excellent photoelectric conversion properties of the oligomers. These initial and promising results suggest that carboxylated oligothiophenes are efficient photosensitizers.  相似文献   
4.
Hybrid oligothiophenes based on a various combinations of thiophene and 3,4-ethylenedioxythiophene (EDOT) groups have been synthesized. UV/Vis absorption spectra show that the number and relative positions of the EDOT groups considerably affect the width of the HOMO-LUMO gap and the rigidity of the conjugated system. Analysis of the crystallographic structure of two hybrid quaterthiophenes confirms that insertion of two adjacent EDOT units in the middle of the molecule leads to a self-rigidification of the conjugated systems by intramolecular SO interactions. Cyclic voltammetry data shows that the first oxidation potential of the oligomers decreases with increasing chain length and increasing number of EDOT groups for a given chain length. Electrochemical studies and theoretical calculations show that the positions of the EDOT units in the conjugated chain control the potential difference (DeltaE(p)) between the first and second oxidation steps. Moving the EDOT groups from the outer to the inner positions of the conjugated system increases DeltaE(p). Theoretical calculations confirm that this phenomenon reflects an increase of the intramolecular coulombic repulsion between positive charges in the dication. A thin-film field-effect transistor was fabricated by vacuum sublimation of a pentamer with alternating thiophene-EDOT structure, and the hole mobility was determined.  相似文献   
5.
The nature and properties of the low-lying singlet and triplet valence excited states of 2,2':5',2'-terthiophene (terthiophene) and 2,2':5',2':5',2'-quaterthiophene (tetrathiophene) are discussed on the basis of high-level ab initio computations. The spectroscopic features determined experimentally for short alpha-oligothiophenes are rationalised on theoretical grounds. Special attention is devoted to the nonradiative decay process through intersystem crossing (ISC) from the singlet to the triplet manifold, which is known to be relatively less efficient in tetrathiophene. Along the geometry relaxation of the S1 state of terthiophene, the S1 and T2 states become degenerate, which leads to a favourable situation for the occurrence of ISC. The parallel process is expected to be less favoured in tetrathiophene because of the less efficient spin-orbit coupling and the increase of the S1-T2 energy gap.  相似文献   
6.
A library of symmetrical linear oligothiophene was prepared employing decarboxylative cross‐coupling reaction as the key transformation. Thiophene potassium carboxylate salts were used as cross‐coupling partners without the need of co‐catalyst, base, or additives. This method demonstrates complete chemoselectivity and is a comprehensive greener approach compared to the existing methods. The modularity of this approach is demonstrated with the preparation of discreet oligothiophenes with up to 10 thiophene repeat units. Symmetrical oligothiophenes are prototypical organic semiconductors where their molecular electrical doping as a function of the chain length can be assessed spectroscopically. An oligothiophene critical length for integer charge transfer was observed to be 10 thiophene units, highlighting the potential use of discrete oligothiophenes as doped conduction or injection layers in organic electronics applications.  相似文献   
7.
The linear and non‐linear optical properties of a family of dumbbell‐shaped dinuclear complexes, in which an oligothiophene chain with various numbers of rings (1, 3, and 6) acts as a bridge between two homoleptic tris(2,2′‐bipyridine)ruthenium(II) complexes, have been fully investigated by using a range of spectroscopic techniques (absorption and luminescence, transient absorption, Raman, and non‐linear absorption), together with density functional theory calculations. Our results shed light on the impact of the synergistic collaboration between the electronic structures of the two chemical moieties on the optical properties of these materials. Experiments on the linear optical properties of these compounds indicated that the length of the oligothiophene bridge was critical for luminescent behavior. Indeed, no emission was detected for compounds with long oligothiophene bridges (compounds 3 and 4 , with 3 and 6 thiophene rings, respectively), owing to the presence of the 3π? π* state of the conjugated bridge below the 3MLCT‐emitting states of the end‐capping RuII complexes. In contrast, the compound with the shortest bridge ( 2 , one thiophene ring) shows excellent photophysical features. Non‐linear optical experiments showed that the investigated compounds were strong non‐linear absorbers in wide energy ranges. Indeed, their non‐linear absorption was augmented upon increasing the length of the oligothiophene bridge. In particular, the compound with the longest oligothiophene bridge not only showed strong two‐photon absorption (TPA) but also noteworthy three‐photon‐absorption behavior, with a cross‐section value of 4×10?78 cm6 s2 at 1450 nm. This characteristic was complemented by the strong excited‐state absorption (ESA) that was observed for compounds 3 and 4 . As a matter of fact, the overlap between the non‐linear absorption and ESA establishes compounds 3 and 4 as good candidates for optical‐power‐limiting applications.  相似文献   
8.
The extent of charge delocalization and of conjugation in oligofurans and oligothiophenes was studied by using mixed valence systems comprising oligofurans and oligothiophenes capped at both ends by ferrocenyl redox units. Using electrochemical, spectral, and computational tools, we find strong charge delocalization in ferrocene‐capped oligofurans which was stronger than in the corresponding oligothiophene systems. Spectroscopic studies suggest that the electronic coupling integral (Hab) is roughly 30–50 % greater for oligofuran‐bridged systems, indicating better energy matching between ferrocene units and oligofurans. The distance decay constant (damping factor), β, is similar for oligofurans (0.066 A?1) and oligothiophenes (0.070 A?1), which suggests a similar extent of delocalization in the bridge, despite the higher HOMO–LUMO gap in oligofurans. Computational studies indicate a slightly larger extent of delocalization in furan‐bridged systems compared with thiophene‐bridged systems, which is consistent with oligofurans being significantly more rigid and less aromatic than oligothiophenes. High charge delocalization in oligofurans, combined with the previously reported strong fluorescence, high mobility, and high rigidity of oligofuran‐based materials makes them attractive candidates for organic electronic applications.  相似文献   
9.
Linear conjugated oligothiophenes of variable length and different substitution pattern are ubiquitous in technologically advanced optoelectronic devices, though limitations in application derive from insolubility, scarce processability and chain‐end effects. This study describes an easy access to chiral cyclic oligothiophenes constituted by 12 and 18 fully conjugated thiophene units. Chemical oxidation of an “inherently chiral” sexithiophene monomer, synthesized in two steps from commercially available materials, induces the formation of an elliptical dimer and a triangular trimer endowed with electrosensitive cavities of different tunable sizes. Combination of chirality with electroactivity makes these molecules unique in the current oligothiophenes literature. These macrocycles, which are stable and soluble in most organic solvents, show outstanding chiroptical properties, high circularly polarized luminescence effects and an exceptional enantiorecognition ability.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号