首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19215篇
  免费   2406篇
  国内免费   864篇
化学   6337篇
晶体学   53篇
力学   1145篇
综合类   237篇
数学   2240篇
物理学   2935篇
无线电   9538篇
  2024年   95篇
  2023年   393篇
  2022年   619篇
  2021年   827篇
  2020年   958篇
  2019年   595篇
  2018年   502篇
  2017年   759篇
  2016年   956篇
  2015年   899篇
  2014年   1357篇
  2013年   1177篇
  2012年   1286篇
  2011年   1222篇
  2010年   943篇
  2009年   1009篇
  2008年   992篇
  2007年   1165篇
  2006年   1037篇
  2005年   916篇
  2004年   762篇
  2003年   731篇
  2002年   532篇
  2001年   454篇
  2000年   384篇
  1999年   288篇
  1998年   281篇
  1997年   208篇
  1996年   201篇
  1995年   200篇
  1994年   138篇
  1993年   122篇
  1992年   108篇
  1991年   59篇
  1990年   48篇
  1989年   34篇
  1988年   27篇
  1987年   18篇
  1986年   41篇
  1985年   38篇
  1984年   29篇
  1983年   10篇
  1982年   9篇
  1981年   3篇
  1980年   7篇
  1979年   21篇
  1978年   5篇
  1977年   7篇
  1976年   6篇
  1971年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Matrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases known to exert multiple regulatory roles in tumor progression. A variety of chemical classes have been explored for targeting individual MMP isoforms. In the present study, we further developed our isatin based scaffold BB0223107 capable of binding to and inactivating MMP-2 in a zinc-independent manner (Agamennone et al., 2016). Forty four new compounds were synthesized based on the modified BB0223107. All compounds were tested in enzyme inhibition assays against MMP-2, ?8 and ?13. SAR studies demonstrated that 5-het(aryl)-3-aminoindolin-2-ones (3739) were active toward MMP-2 and MMP-13. The most potent compounds 33 and 37 displayed an IC50 of 3 µM against MMP-13 and showed a negligible activity toward MMP-8; almost all new compounds were inactive toward MMP-8. Replacement of the isatin ring with a biaryl system (compound 33) did not decrease the potency against MMP-13 but reduced the selectivity. Structure-based computational studies were carried out to rationalize the inhibitory activity data. The analysis of binding geometries confirmed that all fragments occupied the S1′ site in the three enzymes while no ligand was able to bind the catalytic zinc ion. To the best of our knowledge, this is the first example of 3-aminoindolin-2-one-based MMP inhibitors that, based on the computer modeling study, do not coordinate the zinc ion. Thus, the het(aryl)-3-aminoindolin-2-one derivatives emerge as a drug-like and promising chemotype that, along with the hetaryl variations, represents an alternative and thrifty tool for chemical space exploration aimed at MMP inhibitor design.  相似文献   
2.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
3.
根据新时代新工科人才需求特点和电工学课程特点,分析非电专业学生的电类实践需求,提出构建电工学课程为核心的电工电子实践创新能力培养新体系。通过优化教学内容、开展教学模式和考核模式改革、构建教学资源体系和进行教师队伍建设,使我校电工学课程教学质量提升、学生工程实践和创新能力提高、学生满意度增加、一流课程建设成效显著。  相似文献   
4.
The degradation behavior of implants is significantly important for bone repair. However, it is still unprocurable to spatiotemporally regulate the degradation of the implants to match bone ingrowth. In this paper, a magneto-controlled biodegradation model is established to explore the degradation behavior of magnetic scaffolds in a magnetothermal microenvironment generated by an alternating magnetic field (AMF). The results demonstrate that the scaffolds can be heated by magnetic nanoparticles (NPs) under AMF, which dramatically accelerated scaffold degradation. Especially, magnetic NPs modified by oleic acid with a better interface compatibility exhibit a greater heating efficiency to further facilitate the degradation. Furthermore, the molecular dynamics simulations reveal that the enhanced motion correlation between magnetic NPs and polymer matrix can accelerate the energy transfer. As a proof-of-concept, the feasibility of magneto-controlled degradation for implants is demonstrated, and an optimizing strategy for better heating efficiency of nanomaterials is provided, which may have great instructive significance for clinical medicine.  相似文献   
5.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
6.
Quadrature spatial modulation (QSM) utilizes the in‐phase and quadrature spatial dimensions to transmit the real and imaginary parts of a single signal symbol, respectively. The improved QSM (IQSM) transmits two signal symbols per channel use through a combination of two antennas for each of the real and imaginary parts. The main contributions of this study can be summarized as follows. First, we derive an upper bound for the error performance of the IQSM. We then design constellation sets that minimize the error performance of the IQSM for several system configurations. Second, we propose a double QSM (DQSM) that transmits the real and imaginary parts of two signal symbols through any available transmit antennas. Finally, we propose a parallel IQSM (PIQSM) that splits the antenna set into equal subsets and performs IQSM within each subset using the same two signal symbols. Simulation results demonstrate that the proposed constellations significantly outperform conventional constellations. Additionally, DQSM and PIQSM provide a performance similar to that of IQSM while requiring a smaller number of transmit antennas and outperform IQSM with the same number of transmit antennas.  相似文献   
7.
This mini-review highlights key structural features that should be taken into account when creating ambipolar redox-active closed-shell metal-free molecules. This type of compound is strongly required for the fabrication of all-organic ‘poleless’ batteries and semiconductors. The suggested strategies aimed at stabilization of both oxidized (cationic) and reduced (anionic) redox-states are based on the comprehensive analysis of the most successful structures taken from the recent publications.  相似文献   
8.
9.
研究和分析了面向航空通信应用的边沿触发器教学设计。以边沿触发电路实现原理为核心,引导边沿触发机制的探究式学习;以航空机载网络通信为具体应用背景,引入科学研究和工程实现中实际问题,设计曼切斯特码检测系统实验;使得边沿触发器教学成为“知识再创造”的过程和创新实践的新载体,以期培养新工科背景下的独立、创新和实践精神。  相似文献   
10.
Orthorhombic molybdenum trioxide (MoO3) is one of the most promising anode materials for sodium‐ion batteries because of its rich chemistry associated with multiple valence states and intriguing layered structure. However, MoO3 still suffers from the low rate capability and poor cycle induced by pulverization during de/sodiation. An ingenious two‐step synthesis strategy to fine tune the layer structure of MoO3 targeting stable and fast sodium ionic diffusion channels is reported here. By integrating partially reduction and organic molecule intercalation methodologies, the interlayer spacing of MoO3 is remarkably enlarged to 10.40 Å and the layer structural integration are reinforced by dimercapto groups of bismuththiol molecules. Comprehensive characterizations and density functional theory calculations prove that the intercalated bismuththiol (DMcT) molecules substantially enhanced electronic conductivity and effectively shield the electrostatic interaction between Na+ and the MoO3 host by conjugated double bond, resulting in improved Na+ insertion/extraction kinetics. Benefiting from these features, the newly devised layered MoO3 electrode achieves excellent long‐term cycling stability and outstanding rate performance. These achievements are of vital significance for the preparation of sodium‐ion battery anode materials with high‐rate capability and long cycling life using intercalation chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号