首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   586篇
  免费   237篇
  国内免费   100篇
化学   546篇
晶体学   14篇
力学   3篇
数学   2篇
物理学   81篇
无线电   277篇
  2024年   29篇
  2023年   57篇
  2022年   68篇
  2021年   106篇
  2020年   133篇
  2019年   87篇
  2018年   87篇
  2017年   52篇
  2016年   72篇
  2015年   58篇
  2014年   45篇
  2013年   42篇
  2012年   29篇
  2011年   17篇
  2010年   10篇
  2009年   11篇
  2008年   4篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  1985年   2篇
  1982年   1篇
排序方式: 共有923条查询结果,搜索用时 31 毫秒
1.
Lithium (Li) metal, as an appealing candidate for the next-generation of high-energy-density batteries, is plagued by its safety issue mainly caused by uncontrolled dendrite growth and infinite volume expansion. Developing new materials that can improve the performance of Li-metal anode is one of the urgent tasks. Herein, a new MXene derivative containing pure rutile TiO2 and N-doped carbon prepared by heat-treating MXene under a mixing gas, exhibiting high chemical activity in molten Li, is reported. The lithiation MXene derivative with a hybrid of LiTiO2-Li3N-C and Li offers outstanding electrochemical properties. The symmetrical cell assembling lithiation MXene derivative hybrid anode exhibits an ultra-long cycle lifespan of 2000 h with an overpotential of ≈30 mV at 1 mA cm−2, which overwhelms Li-based anodes reported so far. Additionally, long-term operations of 34, 350, and 500 h at 10 mA cm−2 can be achieved in symmetrical cells at temperatures of −10, 25, and 50 °C, respectively. Both experimental tests and density functional theory calculations confirm that the LiTiO2-Li3N-C skeleton serves as a promising host for Li infusion by alleviating volume variation. Simultaneously, the superlithiophilic interphase of Li3N guides Li deposition along the LiTiO2-Li3N-C skeleton to avoid dendrite growth.  相似文献   
2.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
3.
《中国化学快报》2020,31(4):988-991
Designing efficient electrocatalysts with low Pt loadings for hydrogen evolution reaction(HER) is urgently required for renewable and sustainable energy conversion.Here,we report a strategy that Pt nanoparticulates are spontaneously immobilized on porous MXene/MAX monolith as HER catalysts by utilizing the redox reaction between Ti_3C_2T_x MXene and [PtCl_4]~2 in H_2 PtCl_6 aqueous solution.By taking advantage of homogeneously distributed Pt nanoparticulates on highly electrically conductive porous Ti_3C_2T_x/Ti_3AlC_2 monolith,the as-prepared electrocatalysts show high catalytic performance for hydrogen evolution.Specifically,the binder-free electrocatalysts have Pt loadings as low as 8.9 μg/cm~2,with low overpotential of 43 mV at a curre nt density of 10 mA/cm~2 and low Tafel slope that three times lower than porous Ti_3C_2T_x/Ti_3AlC_2 without Pt loading.This strategy offers a new approach to constructing ultra-low Pt-loading HER catalysts on the basis of in situ redox reaction between noble metal ions and MXenes.  相似文献   
4.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   
5.
2D Ti3C2Tx MXene, possessing facile preparation, high electrical conductivity, flexibility, and solution processability, shows good application potential for enhancing device performance of perovskite solar cells (PVSCs). In this study, tetrabutylammonium bromide functionalized Ti3C2Tx (TBAB-Ti3C2Tx) is developed as cathode buffer layer (CBL) to regulate the PCBM/Ag cathode interfacial property for the first time. By virtue of the charge transfer from TBAB to Ti3C2Tx demonstrated by electron paramagnetic resonance and density functional theory, the TBAB-Ti3C2Tx CBL with high electrical conductivity exhibits significantly reduced work function of 3.9 eV, which enables optimization of energy level alignment and enhancement of charge extraction. Moreover, the TBAB-Ti3C2Tx CBL can effectively inhibit the migration of iodine ions from perovskite layer to Ag cathode, which synergistically suppresses defect states and reduce charge recombination. Consequently, utilizing MAPbI3 perovskite without post-treatment, the TBAB-Ti3C2Tx based device exhibits a dramatically improved power conversion efficiency of 21.65% with significantly improved operational stability, which is one of the best efficiencies reported for the devices based on MAPbI3/PCBM with different CBLs. These results indicate that TBAB-Ti3C2Tx shall be a promising CBL for high-performance inverted PVSCs and inspire the further applications of quaternary ammonium functionalized MXenes in PVSCs.  相似文献   
6.
Assembling 2D-material (2DM) nanosheets into micro- and macro-architectures with augmented functionalities requires effective strategies to overcome nanosheet restacking. Conventional assembly approaches involve external binders and/or functionalization, which inevitably sacrifice 2DM's nanoscale properties. Noble metal ions (NMI) are promising ionic crosslinkers, which can simultaneously assemble 2DM nanosheets and induce synergistic properties. Herein, a collection of NMI–2DM complexes are screened and categorized into two sub-groups. Based on the zeta potentials, two assembly approaches are developed to obtain 1) NMI-crosslinked 2DM hydrogels/aerogels for heterostructured catalysts and 2) NMI–2DM inks for templated synthesis. First, tetraammineplatinum(II) nitrate (TPtN) serves as an efficient ionic crosslinker to agglomerate various 2DM dispersions. By utilizing micro-textured assembly platforms, various TPtN–2DM hydrogels are fabricated in a scalable fashion. Afterward, these hydrogels are lyophilized and thermally reduced to synthesize Pt-decorated 2DM aerogels (Pt@2DM). The Pt@2DM heterostructures demonstrate high, substrate-dependent catalytic activities and promote different reaction pathways in the hydrogenation of 3-nitrostyrene. Second, PtCl4 can be incorporated into 2DM dispersions at high NMI molarities to prepare a series of PtCl4–2DM inks with high colloidal stability. By adopting the PtCl4–graphene oxide ink, various Pt micro-structures with replicated topographies are synthesized with accurate control of grain sizes and porosities.  相似文献   
7.
《中国化学快报》2020,31(4):1039-1043
Ti3C2Tx, a most studied member of MXene family, shows promise as a candidate electrode for pseudocapacitor due to its electronic conductivity and hydrophilic surface. However, the unsatisfactory yield of Ti3C2Tx few-layer flakes significantly restricted it in real applications. Here, we proposed a simple solution to boost the yield of Ti3C2Tx few-layer flakes by decreasing precursor size. When using the small 500 mesh Ti3AlC2 powders as raw material, high yield of 65% was successfully achieved. Moreover, the as-received small flakes also exhibit an enhanced pseudocapacior performance owing to their excellent electrical conductivity, expanded interlayer space and more O content on the surface. This work not only sheds light on the cost effective mass production of Ti3C2Tx few-layer flakes, but also provides an efficient solution for the design of MXene electrodes with high pseudocapacior performance.  相似文献   
8.
SnNb2O6 and Sn2Nb2O7 nanosheets were synthetized via microwave assisted hydrothermal method, and innovatively employed as anode materials for lithium-ion battery. Compared with Sn2Nb2O7 and the previously reported pure Sn-based anode materials, the SnNb2O6 electrode exhibited outstanding cycling performance.  相似文献   
9.
Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts.  相似文献   
10.
The present article describes a miniaturized potentiometric urea lipid film based biosensor on graphene nanosheets. Structural characterization of graphene nanosheets for miniaturization of potentiometric urea lipid film based biosensors have been studied through atomic force microscopy (AFM) and transmission electron microscopy (TEM) measurements. UV‐Vis and Fourrier transform IR (FTIR) spectroscopy have been utilized to study the pre‐ and postconjugated surfaces of graphene nanosheets. The presented potentiometric urea biosensor exhibits good reproducibility, reusability, selectivity, rapid response times (~4 s), long shelf life and high sensitivity of ca. 70 mV/decade over the urea logarithmic concentration range from 1×10?6 M to 1×10?3 M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号