首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33673篇
  免费   5333篇
  国内免费   2698篇
化学   14986篇
晶体学   541篇
力学   1178篇
综合类   232篇
数学   2310篇
物理学   11695篇
无线电   10762篇
  2024年   106篇
  2023年   367篇
  2022年   624篇
  2021年   735篇
  2020年   962篇
  2019年   890篇
  2018年   920篇
  2017年   1154篇
  2016年   1371篇
  2015年   1431篇
  2014年   1725篇
  2013年   3051篇
  2012年   2172篇
  2011年   2165篇
  2010年   1760篇
  2009年   1870篇
  2008年   2061篇
  2007年   2039篇
  2006年   1970篇
  2005年   1765篇
  2004年   1587篇
  2003年   1423篇
  2002年   1403篇
  2001年   1064篇
  2000年   1088篇
  1999年   847篇
  1998年   779篇
  1997年   643篇
  1996年   543篇
  1995年   571篇
  1994年   420篇
  1993年   350篇
  1992年   310篇
  1991年   247篇
  1990年   190篇
  1989年   139篇
  1988年   154篇
  1987年   120篇
  1986年   112篇
  1985年   99篇
  1984年   105篇
  1983年   48篇
  1982年   69篇
  1981年   58篇
  1980年   45篇
  1979年   47篇
  1978年   21篇
  1977年   20篇
  1976年   11篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
A first‐principles‐based effective Hamiltonian is developed and employed to investigate finite‐temperature structural properties of a prototype of perovskite halides, that is CsPbI3. Such simulations, when using first‐principles‐extracted coefficients, successfully reproduce the existence of an orthorhombic Pnma state and its iodine octahedral tilting angles around room temperature. However, they also yield a direct transformation from Pnma to cubic P m 3 ¯ m upon heating, unlike measurements that reported the occurrence of an intermediate long‐range‐tilted tetragonal P4/mbm phase in‐between the orthorhombic and cubic phases. Such disagreement, which may cast some doubts about the extent to which first‐principle methods can be trusted to mimic hybrid perovskites, can be resolved by “only” changing one short‐range tilting parameter in the whole set of effective Hamiltonian coefficients. In such a case, some reasonable values of this specific parameter result in the predictions that i) the intermediate P4/mbm state originates from fluctuations over many different tilted states; and ii) the cubic P m 3 ¯ m phase is highly locally distorted and develops strong transverse antiphase correlation between first‐nearest neighbor iodine octahedral tiltings, before undergoing a phase transition to P4/mbm under cooling.  相似文献   
2.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
3.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
4.
The principles and design of “active” self‐propelling particles that can convert energy, move directionally on their own, and perform a certain function is an emerging multidisciplinary research field, with high potential for future technologies. A simple and effective technique is presented for on‐demand steering of self‐propelling microdiodes that move electroosmotically on water surface, while supplied with energy by an external alternating (AC) field. It is demonstrated how one can control remotely the direction of diode locomotion by electronically modifying the applied AC signal. The swimming diodes change their direction of motion when a wave asymmetry (equivalent to a DC offset) is introduced into the signal. The data analysis shows that the ability to control and reverse the direction of motion is a result of the electrostatic torque between the asymmetrically polarized diodes and the ionic charges redistributed in the vessel. This novel principle of electrical signal‐coded steering of active functional devices, such as diodes and microcircuits, can find applications in motile sensors, MEMs, and microrobotics.  相似文献   
5.
We proposed an electro-optic modulator with two-bus one-ring (TBOR) structure to improve the extinction ratio and reduce insert loss. It has a dual output compared with one-bus one-ring structure. In addition, double-layer graphene makes it possible for the modulation in the visible to mid-infrared wavelength range. It shows that this new electro-optic modulator can present two switching states well with low insertion loss, high absorption and high extinction ratio. At λ=1550 nm, when the switching states are based on the chemical potential, μc=0.38 eV and μc=0.4 eV, the insertion losses of both output ports are less than 2 dB, the absorption of the output port coupled via a micro-ring reaches 45 dB and the extinction ratio reaches 14 dB. When the refractive index of the dielectric material is 4.2, the applied voltage will be less than 1.2 V, thus can be used in low-voltage CMOS technology.  相似文献   
6.
This article describes the investigation of the importance of various reaction conditions on microsyneretic pore formation during polymerization of divinylbenzene (DVB) under so‐called “solvothermal” conditions. To induce microsyneretic pore formation, the most important parameter is an unusually high dilution of monomers with a “good” porogen solvating the polymer chains. High dilution and solvation of the growing poly(DVB) chains promote the prolongation of the polymer chains rather than their interconnection by crosslinking. Consequently, when the polymer gel density reaches the point where syneresis starts, the polymer network is geometrically too extensive to be broken up into precipitating entities and, instead, porogen droplets are formed within the continuous polymer gel. The pore geometry created by microsyneresis offers high surface area in wide mesopores and hence, high capacity for supporting functional groups or reactions with much better accessibility than narrow pores between polymer microspheres produced by macrosyneresis in conventional styrenic polymer supports. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 774–781  相似文献   
7.
《Comptes Rendus Mecanique》2019,347(4):318-331
In this essay we explore analogies between macroscopic patterns, which result from a sequence of phase transitions/instabilities starting from a homogeneous state, and similar phenomena in cosmology, where a sequence of phase transitions in the early universe is believed to have separated the fundamental forces from each other, and also shaped the structure and distribution of matter in the universe. We discuss three distinct aspects of this analogy: (i) Defects and topological charges in macroscopic patterns are analogous to spins and charges of quarks and leptons; (ii) Defects in generic 3+1 stripe patterns carry an energy density that accounts for phenomena that are currently attributed to dark matter; (iii) Space-time patterns of interacting nonlinear waves display behaviors reminiscent of quantum phenomena including inflation, entanglement and dark energy.  相似文献   
8.
2.4GHz动态CMOS分频器的设计   总被引:1,自引:0,他引:1  
对现阶段的主流高速CMOS分频器进行分析和比较,在此基础上设计一种采用TSPC(truesingle phase clock)和E-TSPC(extended TSPC)技术的前置双模分频器电路.该分频器大大提高了工作频率,采用0.6μm CMOS工艺参数进行仿真的结果表明,在5V电源电压下,最高频率达到3GHz,功耗仅为8mW.  相似文献   
9.
The patterning of contact holes by selecting out-of-focus image plane (defocus) using attenuated phase shift masks (APSM) has been studied. Defocus is found to enhance the image modulation at low partial coherence for contact holes with negative local average of mask function. Semi-dense holes up to 130 nm in 8% APSM have been printed by 0.5 μm defocus at a partial coherence of 0.31 using KrF scanner with highest numerical aperture of 0.68. However, these holes were closed with in-focus imaging. Defocus is also found to be beneficial for patterning the pitches that have extensive side lobes with in-focus imaging.  相似文献   
10.
Adaptive modulation and power allocation is introduced into the multicarrier DSCDMA system to improve the system performance and bandwidth efficiency.First,the system design appropriate for adaptive modulation and power allocation is given,then the algorithm of adaptive modulation and power allocation is applied.Simulation results demonstrate great performance improvement compared with the fixed modulated one.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号