首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   877篇
  免费   169篇
  国内免费   118篇
化学   399篇
晶体学   16篇
力学   28篇
综合类   5篇
数学   13篇
物理学   188篇
无线电   515篇
  2024年   3篇
  2023年   40篇
  2022年   24篇
  2021年   53篇
  2020年   45篇
  2019年   50篇
  2018年   34篇
  2017年   42篇
  2016年   66篇
  2015年   55篇
  2014年   64篇
  2013年   84篇
  2012年   62篇
  2011年   70篇
  2010年   41篇
  2009年   51篇
  2008年   43篇
  2007年   47篇
  2006年   50篇
  2005年   44篇
  2004年   30篇
  2003年   24篇
  2002年   35篇
  2001年   22篇
  2000年   17篇
  1999年   8篇
  1998年   14篇
  1997年   9篇
  1996年   11篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1986年   1篇
排序方式: 共有1164条查询结果,搜索用时 962 毫秒
1.
Transparent conducting ZnO:AI thin films with good adhesion and Iow resistivity have been prepared on organic substrates and Coming 7059 glass substrates by r.f. magnetron-sputtering technique at Iow substrate temperature (25-210℃). Structural and photoelectric properties of the deposited films are investigated. The deposited films are polycrystalline with hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. Only the (002) peak is observed.High quality films with resistivity as Iow as 1.0 x 10- 3Ω@ cm and 8.4 x 10- 4Ω@ cm, the average transmittance over 74% and 85% in the wavelength range of the visible spectrum have been obtained on different substrates.  相似文献   
2.
电磁兼容是目前电子镇流器最需要解决的问题之一。介绍了电子镇流器产生的辐射干扰、传导干扰及电流谐波畸变干扰的形成和所造成的影响,分析了产生这些干扰的原因,并分别给出了抑制这些干扰的方法,最后就电子镇流器设计制造中的难点问题作了简要说明。  相似文献   
3.
研究了合成聚(2,4-二甲氧基对苯乙炔)的有机可溶性前聚物的反应条件与单体转化率和前聚物产率的关系。实验结果表明:NaOH是聚合反应的有效引发剂,适宜的反应条件为:单体与NaOH摩尔比为1:1,单体浓度0.05-0.2mol/L,聚合时间2h,温度低5℃,正己烷、石油醚作为有机提取剂可有效提高前聚物产率。用IR、UV-Vis'^HNMR,TGA和 DSC对前聚物进行了表征。  相似文献   
4.
纳米级碳导电剂的种类对licoo2电化学性能的影响   总被引:10,自引:0,他引:10  
碳纳米管;锂离子电池;正极;倍率容量;导电剂  相似文献   
5.
New thermosetting resins were prepared from the reaction of 1,4-bis(2,2-dicyanovinyl)benzene with aromatic diamines in varying molar ratios. The thermal stability of these resins was correlated with their composition and the curing conditions. They were stable in N2 up to 370–448°C and afforded anaerobic char yields of 73–84% at 800°C after curing at 300°C for 20–60 h. The temperature dependence of the electrical resistivity of all resins pyrolyzed at 700°C for 15 h was studied in the temperature range from ?173–327°C (100–600 K). The results showed that at room temperature the unpyrolyzed polymers have insulating properties, whereas a dramatic decrease in the electrical resistivity is observed following pyrolysis. The temperature dependence of the electrical resistivity suggests that all of the materials studied have semiconducting properties. The observed electrical conductivity is thermally activated with activation energies ranging from 0.03–0.06 eV. © 1994 John Wiley & Sons, Inc.  相似文献   
6.
Organic redox-active materials are promising electrode candidates for lithium-ion batteries by virtue of their designable structure and cost-effectiveness. However, their poor electrical conductivity and high solubility in organic electrolytes limit the device's performance and practical applications. Herein, the π-conjugated nitrogen-containing heteroaromatic molecule hexaazatriphenylene (HATN) is strategically embedded with redox-active centers in the skeleton of a Cu-based 2D conductive metal–organic framework (2D c-MOF) to optimize the lithium (Li) storage performance of organic electrodes, which delivers improved specific capacity (763 mAh g−1 at 300 mA g−1), long-term cycling stability (≈90% capacity retention after 600 cycles at 300 mA g−1), and excellent rate performance. The correlation of experimental and computational results confirms that this high Li storage performance derives from the maximum number of active sites (CN sites in the HATN unit and CO sites in the CuO4 unit), favorable electrical conductivity, and efficient mass transfer channels. This strategy of integrating multiple redox-active moieties into the 2D c-MOF opens up a new avenue for the design of high-performance electrode materials.  相似文献   
7.
A conductive engineered cardiac patch (ECP) can reconstruct the biomimetic regenerative microenvironment of an infarcted myocardium. Direct ink writing (DIW) and 3D printing can produce an ECP with precisely controlled microarchitectures. However, developing a printed ECP with high conductivity and flexibility for gapless attachment to conform to epicardial geometry remains a challenge. Herein, an asymmetrical DIW hydrophobic/hydrophilic membrane using heat-processed graphene oxide (GO) ink is developed. The “Masked spin coating” method is also developed that leads to a microscale GO (hydrophilic)/reduced GO (rGO, hydrophobic) physiological sensor, as well as a macroscale moisture-driven GO/rGO actuator. Depositing mussel-inspired polydopamine (PDA) coating on the one side of the DIW rGO , the ultrathin (approximately 500 nm) PDA-rGO (hydrophilic)/rGO (hydrophobic) microlattice (DrGOM) ECP is bestowed with the flexibility and moisture-responsive actuation that allows gapless attachment to the curved surface of the epicardium. Conformable DrGOM exhibits a promising therapeutic effect on rats' infarcted hearts through conductive microenvironment reconstruction and improved neovascularization.  相似文献   
8.
3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one-part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)-silicone composite is developed and thoroughly characterized. The one-part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self-supporting and high-aspect-ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT-silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient-specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.  相似文献   
9.
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   
10.
Stretchable ultra-narrow (e.g., 10 µm in width) microelectrodes are crucial for the electrophysiological monitoring of single cells providing the fundamental understanding to the working mechanism of neuro network or other electrically functional cells. Current fabrication strategies either focus on the preparation of normal stretchable electrodes with hundreds of micrometers or millimeters in width by using inorganic conductive materials or develop conductive organic polymer gel for ultra-narrow electrodes which suffer from low stretchability and instability for long-term implantation, therefore, it is still highly desirable to explore bio-interfacial ultra-narrow stretchable inorganic electrodes. Herein, a hybrid strategy is reported to prepare ultra-narrow multi-channel stretchable microelectrodes without using photolithography or laser-assisting etching. A 10 µm × 10 µm monitoring window is fabricated with enhanced interfacial impedance by the special rough surface. The stretchability achieves to 120% for this 10 µm-width stretchable electrode. Supported by these superior properties, it is demonstrated that the stretchable microelectrodes can detect electrophysiological signals of single cells in vitro and collect electrophysiological signals more precisely in vivo. The reported strategy will open up the accessible preparation of the fine-size stretchable microelectrode. It will significantly improve the resolution of monitoring and stimulation of inorganic stretchable electrodes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号