首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15474篇
  免费   2494篇
  国内免费   1204篇
化学   8884篇
晶体学   478篇
力学   1330篇
综合类   39篇
数学   292篇
物理学   4054篇
无线电   4095篇
  2024年   73篇
  2023年   362篇
  2022年   432篇
  2021年   679篇
  2020年   915篇
  2019年   637篇
  2018年   567篇
  2017年   617篇
  2016年   850篇
  2015年   854篇
  2014年   920篇
  2013年   1119篇
  2012年   847篇
  2011年   972篇
  2010年   900篇
  2009年   886篇
  2008年   1018篇
  2007年   1095篇
  2006年   943篇
  2005年   832篇
  2004年   708篇
  2003年   636篇
  2002年   435篇
  2001年   354篇
  2000年   279篇
  1999年   217篇
  1998年   185篇
  1997年   129篇
  1996年   131篇
  1995年   77篇
  1994年   88篇
  1993年   64篇
  1992年   57篇
  1991年   56篇
  1990年   39篇
  1989年   34篇
  1988年   17篇
  1987年   21篇
  1986年   24篇
  1985年   16篇
  1984年   17篇
  1983年   21篇
  1982年   14篇
  1981年   6篇
  1979年   8篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1974年   2篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The design of new solid-state proton-conducting materials is a great challenge for chemistry and materials science. Herein, a new anionic porphyrinylphosphonate-based MOF ( IPCE-1Ni ), which involves dimethylammonium (DMA) cations for charge compensation, is reported. As a result of its unique structure, IPCE-1Ni exhibits one of the highest value of the proton conductivity among reported proton-conducting MOF materials based on porphyrins (1.55×10−3 S cm−1 at 75 °C and 80 % relative humidity).  相似文献   
2.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
3.
We have synthesized a series of triarylamine‐cored molecules equipped with an adjacent amide moiety and dendritic peripheral tails in a variety of modes. We show by 1H NMR and UV/Vis spectroscopy that their supramolecular self‐assembly can be promoted in solution upon light stimulation and radical initiation. In addition, we have probed their molecular arrangements and mesomorphic properties in the bulk by integrated studies on their film state by using differential scanning calorimetry (DSC), variable‐temperature polarizing optical microscopy (VT‐POM), variable‐temperature X‐ray diffraction (VT‐XRD), and atomic force microscopy (AFM). Differences in the number and the disposition of the peripheral tails significantly affect their mesomorphic properties associated with their lamellar‐ or columnar‐packed nanostructures, which are based on segregated stacks of the triphenylamine cores and the lipophilic/lipophobic periphery. Such structural tuning is of interest for implementation of these soft self‐assemblies as electroactive materials from solution to mesophases.  相似文献   
4.
Particularly-shaped silver nanostructures are successfully applied in many scientific fields, such as nanotechnology, catalysis, (nano)engineering, optoelectronics, and sensing. In recent years, the production of shape-controlled silver-based nanostructures and the knowledge around this topic has grown significantly. Hence, on the basis of the most recent results reported in the literature, a critical analysis around the driving forces behind the synthesis of such nanostructures are proposed herein, pointing out the important role of surface-regulating agents in driving crystalline growth by favoring (or opposing) development along specific directions. Additionally, growth mechanisms of the different morphologies considered here are discussed in depth, and critical points highlighted.  相似文献   
5.
The mechanism of lithium insertion that occurs in an iron oxyfluoride sample with a hexagonal–tungsten–bronze (HTB)-type structure was investigated by the pair distribution function. This study reveals that upon lithiation, the HTB framework collapses to yield disordered rutile and rock salt phases followed by a conversion reaction of the fluoride phase toward lithium fluoride and nanometer-sized metallic iron. The occurrence of anionic vacancies in the pristine framework was shown to strongly impact the electrochemical activity, that is, the reversible capacity scales with the content of anionic vacancies. Similar to FeOF-type electrodes, upon de-lithiation, a disordered rutile phase forms, showing that the anionic chemistry dictates the atomic arrangement of the re-oxidized phase. Finally, it was shown that the nanoscaling and structural rearrangement induced by the conversion reaction allow the in situ formation of new electrode materials with enhanced electrochemical properties.  相似文献   
6.
7.
The resistance of metal–organic frameworks towards water is a very critical issue concerning their practical use. Recently, it was shown for microporous MOFs that the water stability could be increased by introducing hydrophobic pendant groups. Here, we demonstrate a remarkable stabilisation of the mesoporous MOF Al‐MIL‐101‐NH2 by postsynthetic modification with phenyl isocyanate. In this process 86 % of the amino groups were converted into phenylurea units. As a consequence, the long‐term stability of Al‐MIL‐101‐URPh in liquid water could be extended beyond a week. In water saturated atmospheres Al‐MIL‐101‐URPh decomposed at least 12‐times slower than the unfunctionalised analogue. To study the underlying processes both materials were characterised by Ar, N2 and H2O sorption measurements, powder X‐ray diffraction, thermogravimetric and chemical analysis as well as solid‐state NMR and IR spectroscopy. Postsynthetic modification decreased the BET equivalent surface area from 3363 to 1555 m2 g?1 for Al‐MIL‐101‐URPh and reduced the mean diameters of the mesopores by 0.6 nm without degrading the structure significantly and reducing thermal stability. In spite of similar water uptake capacities, the relative humidity‐dependent uptake of Al‐MIL‐101‐URPh is slowed and occurs at higher relative humidity values. In combination with 1H‐27Al D ‐HMQC NMR spectroscopy experiments this favours a shielding mechanism of the Al clusters by the pendant phenyl groups and rules out pore blocking.  相似文献   
8.
A route to synthesize ZSM‐5 crystals with a bimodal micro/mesoscopic pore system has been developed in this study; the successful incorporation of the mesopores within the ZSM‐5 structure was performed using tetrapropylammonium hydroxide (TPAOH)‐impregnated mesoporous materials containing carbon nanotubes in the pores, which were encapsulated in the ZSM‐5 crystals during a solid rearrangement process within the framework. Such mesoporous ZSM‐5 zeolites can be readily obtained as powders, thin films, or monoliths.  相似文献   
9.
热作模具钢表面激光堆焊耐磨合金层的研究   总被引:3,自引:0,他引:3  
本文主要通过在H13钢上用大功率CO_2激光束进行堆焊,阐述了激光堆焊工艺变化对堆焊组织和性能的影响,在本试验条件下,得到了高密度弥散金属化合物组织的激光堆焊层,平均硬度为HV800,与基体呈冶金结合,耐磨性比H13模具钢提高149%。  相似文献   
10.
ISO Guide 35 deals with RM stability issues and scrutinizes the evaluation of stability testing results under the assumption that either there is no trend at all (a rather rare situation), or any observed deterministic change is insignificant and thus can be neglected. However, market demands for reliable reference materials are obviously not limited to stable or at least seemingly stable materials. In many analytical applications, analytes and measurands under consideration are known, or at least suspected, to be unstable on time scales that may vary widely from measurand to measurand. The Federal Institute for Materials Research and Testing (BAM) has developed (and successfully uses) an integrated approach in its certification practice. The approach is based on an initial stability study and subsequent post-certification monitoring. Data evaluation is model-based and takes advantage of all information collected in the stability testing scheme(s). It thus allows one to deal with any kind of instability observed, to assess limiting time intervals at any stress condition in the range tested, to estimate a final expiry date for materials with detected instabilities or the maximum admissible re-testing interval for seemingly stable materials, and to assess maximum admissible stress loads during delivery of the material to the customer. The article describes (and exemplifies) typical study layout, the model selection, and the integrated data assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号