首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
无线电   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
As a new networking paradigm, Software-Defined Networking (SDN)enables us to cope with the limitations of traditional networks. SDN uses a controller that has a global view of the network and switch devices which act as packet forwarding hardware, known as “OpenFlow switches”. Since load balancing service is essential to distribute workload across servers in data centers, we propose an effective load balancing scheme in SDN, using a genetic programming approach, called Genetic Programming based Load Balancing (GPLB). We formulate the problem to find a path: 1) with the best bottleneck switch which has the lowest capacity within bottleneck switches of each path, 2) with the shortest path, and 3) requiring the less possible operations. For the purpose of choosing the real-time least loaded path, GPLB immediately calculates the integrated load of paths based on the information that receives from the SDN controller. Hence, in this design, the controller sends the load information of each path to the load balancing algorithm periodically and then the load balancing algorithm returns a least loaded path to the controller. In this paper, we use the Mininet emulator and the OpenDaylight controller to evaluate the effectiveness of the GPLB. The simulative study of the GPLB shows that there is a big improvement in performance metrics and the latency and the jitter are minimized. The GPLB also has the maximum throughput in comparison with related works and has performed better in the heavy traffic situation. The results show that our model stands smartly while not increasing further overhead.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号