首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
化学   6篇
物理学   24篇
无线电   17篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
光刻技术及其应用的状况和未来发展   总被引:2,自引:0,他引:2  
光刻技术及其在产业中的开发应用一直是业界人们关注的焦点之一,概述了目前几种具有潜力的光刻机技术及其应用的状况,同时通过对相关光刻的技术性和经济性比较,简述了其未来的发展。  相似文献   
2.
We report a first work on nanofabrication of hydrogen nanosensor from single ZnO branched nanorods (tripod) using in-situ lift-out technique and performed in the chamber of focused ion beam (FIB) system. Self-assembled ZnO branched nanorod has been grown by a cost-effective and fast synthesis route using an aqueous solution method and rapid thermal processing. Their properties were analyzed by X-ray diffraction, scanning electron microscopy, energy dispersion X-ray spectroscopy, transmission electron microscopy, and micro-Raman spectroscopy. These analyses indicate high quality ZnO nanorods. Furthermore, our synthesis technique permits branched nanorods to be easily transferred to other substrates. This flexibility of substrate choice opens the possibility of using FIB system for handling.

The main advantage of the proposed in-situ approach is a controllable lift-out procedure which permitted us to obtain a 90% success rate for building nanodevices. The fabricated nanosensor uses only single self-assembled ZnO branched nanorod (tripod) to gauge the 150 ppm H2 in the air at room temperature. The hydrogen sensitivity is in the range of 0.6–2% depending on which two branches to use. The nanosensor has selectivity against other gases such as O2, CH4, CO and LPG, which shows sensitivity of <0.02%. The single ZnO branched nanorod sensor can operate at low power of <5 μW.  相似文献   

3.
Nanometer-sized W-dendrites are fabricated on Al2O3 substrates with an electron-beam-induced deposition process. Dependence of growth of nanodendrite on surface topography is investigated with transmission electron microscopy. It is confirmed that the nanodendrite grows on convex surfaces but not around a hole on a substrate. These are attributed to different distribution of charges on surfaces with different topographies during electron beam irradiation when charges are produced on the surface due to emission of second electrons. The charges accumulate on convex surface and do not distribute around a hole. Therefore, the nanodendrite grows on the former and not on the latter.  相似文献   
4.
Nano/microwires of semiconducting materials (e.g., GaAs and InP) with triangular cross‐sections can be fabricated by “top–down” approaches that combine lithography of high‐quality bulk wafers (using either traditional photolithography or phase‐shift optical lithography) with anisotropic chemical etching. This method gives good control over the lateral dimensions, lengths, and morphologies of free‐standing wires. The behaviors of many different resist layers and etching chemistries are presented. It is shown how wire arrays with highly ordered alignments can be transfer printed onto plastic substrates. This “top–down” approach provides a simple, effective, and versatile way of generating high‐quality single‐crystalline wires of various compound semiconductors. The resultant wires and wire arrays have potential applications in electronics, optics, optoelectronics, and sensing.  相似文献   
5.
Periodic surface nanostructures induced by femtosecond laser pulses on polycrystalline ZnO are presented. By translating the sample line-by-line under appropriate irradiation conditions, grating-like nanostructures with an average period of 160 nm are fabricated. The dependence of surface morphologies on the processing parameters, such as laser fluence, pulse number and laser polarization, are studied by scanning electronic microscope (SEM). In addition, photoluminescence (PL) analysis at room-temperature indicates that the PL intensity of the irradiated area increases significantly compared with the un-irradiated area. Using femtosecond laser pulses irradiation to fabricate periodic surface nanostructures on polycrystalline ZnO is efficient, simple and low cost, which shows great potential applications in ZnO-based optoelectronic devices.  相似文献   
6.
A concentrated nanoparticulate-based ethylene glycol suspension was prepared and electrosprayed at optimum and stable cone-jet mode conditions. Using laser spectroscopy, the droplets were measured and found to range within 0.23–3.8 μm. In parallel to spectroscopy-assisted sizing, a volume equivalence route for estimating droplet sizes was carried out by measuring contact angles and diameters of the deposits. The electrosprayed nanosuspension relics were examined using optical and transmission electron microscopy. These deposits were further characterized using energy-dispersive X-rays and selected area electron diffraction. Simultaneously deposits were formed by a controlled route through needle deposition without the presence of an electric field. The structures formed in this non-electric field driven route are compared with those formed with electric fields. Thus, elucidating electrosprays as a competing nanofabrication route for forming self-assemblies with a wide range of nanomaterials in the nanoscale for top-down based bottom-up assembly of structures.  相似文献   
7.
We have investigated three-dimensional (3-D) architectures–microspheres and radial structures–based on biopolymer-assisted self-assembly from one-dimensional ZnO nanorods. The developed method is simple, rapid and cost-effective and can be used for self-assembly of different complex superstructures. A possible model of 3-D architectures self-assembled with biopolymer assistance is presented using minimum energy considerations. Scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy, micro–Raman spectroscopy and cathode luminescence investigations show that the novel 3-D architectures are built from high-purity ZnO nanorods with a wurtzite structure. The resulting radial structures show an intense ultraviolet (UV) cathode luminescence emission suggesting applications as UV light emitting diodes or lasers. Their structural characteristics endow them with a broad area of applications and offer a possibility to be used as fundamental low-dimensional building units. These building units open opportunities for the self-assembly of multifunctional nanostructured systems with applications in bioscience and nanomedicine, electronics and photonics.  相似文献   
8.
We demonstrate a “soft‐imprinting” method for the fabrication of highly ordered porous anodic alumina (HOPAA) templates on different substrates (such as Si, glass slides, and flexible polyimide films) over large areas (> 1.5 cm2). In this process, Ar plasma etching is employed to soft imprint an evaporated Al film on the substrates using a free‐standing HOPAA template as a mask, thus creating ordered nanoindentations on the Al surface. The ordered nanoindentations in turn guide the subsequent anodization of Al to generate HOPAA templates on the substrates (HOPAA–substrates), which inherit the pattern of the free‐standing HOPAA mask. This soft‐imprinting technique is also applicable to the fabrication of HOPAA on flexible polymer films. To demonstrate the potential uses of the HOPAA–substrates in nanofabrication, highly ordered Au nanowire arrays are fabricated on a Si substrate and TiO2 nanotube arrays are prepared on a glass substrate via solution‐ and vapor‐based fabrication processes, respectively.  相似文献   
9.
利用多普勒原理对Cr原子束进行横向准直.为了得到好的激光准直效果必须首先把激光的中心频率稳定在偏离Cr原子共振中心频率-5±0.26 MHz的位置上.经过多次的理论与实验得出了优化的实验参量,并且得出如果探测光束与准直光束不平行会造成横向线宽的展宽.根据实验数据选择合适的实验参量,实现利用多普勒原理横向准直Cr原子束,得到准直后Cr原子束的横向发散角为0.48 mrad, 横向温度为265 μK.  相似文献   
10.
We report on a simple and effective process that allows direct UV-imprinting of micro- and nanostructures on non-planar surfaces, even at sharp edges such as step surfaces. The key for the process is the use of a thin flexible polymer stamp, which was fabricated by spin-coating poly(dimethylsiloxane) (PDMS) on a pre-patterned Si or poly(methyl methacrylate) (PMMA) master and releasing the thin PDMS layer after curing. The thin PDMS stamp was used to conformally mold a UV resist layer coated on various non-planar substrates with different radii of curvature. With this method, we have successfully demonstrated micro- and nanopatterns down to 63 nm on curved surfaces as well as sharp step-like structures. The process so developed will improve the versatility and applicability of molding technologies in many applications that require patterning non-planar substrates, considering that most molding technologies allow for patterning only on planar substrates or surfaces with large curvature radii.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号