首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
物理学   2篇
无线电   1篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
In this paper we describe the alloying process of ultra-thin Al layers (below 8 × 1015 Al/cm2) deposited on Ni(1 1 1). For this purpose Auger electron spectroscopy, low energy electron diffraction, and ion beam analysis-channelling measurements have been performed in situ in an ultra-high vacuum chamber. Al deposits formed at low temperature (about 130 K) are strained defective crystalline layers retaining the substrate orientation. Alloying takes place, with very progressive Ni enrichment, in a very broad temperature range between 250 K and 570 K. This feature shows that diffusion of the alloy species is more and more difficult when the Ni concentration increases. At 570 K a crystallographically and chemically ordered Ni3Al phase is formed, and its order continuously improves upon annealing, up to 750 K. We have shown by ion beam methods that this alloy is three-dimensional, extending up to 16 (1 1 1) planes for the thickest deposits. The Ni3Al phase can also be obtained directly by Al deposition at 750 K, but its crystalline quality is lower and the layer is probably formed of grains elongated along 〈1 1 −2〉 directions. The Al content of the thin Ni3Al layers formed mostly dissolves in the bulk above 800 K. However a small amount of Al remains segregated at the Ni crystal surface.  相似文献   
2.
在普通MIM隧道发光结的基础上,制备了多层膜结构MIM发光结。这种结构的发光结含有两层氧化物绝缘层及双层MgF2。其发光性能优良,发光效率达10-6-10-5量级。测试表明,其光谱谱峰较普通MIM结有蓝移现象,并且I—V特性中存在强烈的负阻现象(NRP)。  相似文献   
3.
This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 1015 Al/cm2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 1015 Al/cm2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni3Al “interfacial” layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L12 Ni3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the surface. The atomic diffusion is very limited in the NiAl phase that forms, and thus the progressive enrichment in Ni of the Al film, i.e. of the mean Ni concentration, becomes slower and slower. As a consequence, alloying is observed to take place in a very broad temperature range between 300 K and 700 K. For annealing temperatures above 800 K, the alloyed layer is decomposed, Al atoms diffusing in the bulk of the substrate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号