首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
物理学   1篇
无线电   36篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
排序方式: 共有37条查询结果,搜索用时 794 毫秒
1.
Testing analog and mixed-signal circuits is a costly task due to the required test time targets and high end technical resources. Indirect testing methods partially address these issues providing an efficient solution using easy to measure CUT information that correlates with circuit performances. In this work, a multiple specification band guarding technique is proposed as a method to achieve a test target of misclassified circuits. The acceptance/rejection test regions are encoded using octrees in the measurement space, where the band guarding factors precisely tune the test decision boundary according to the required test yield targets. The generated octree data structure serves to cluster the forthcoming circuits in the production testing phase by solely relying on indirect measurements. The combined use of octree based encoding and multiple specification band guarding makes the testing procedure fast, efficient and highly tunable. The proposed band guarding methodology has been applied to test a band-pass Butterworth filter under parametric variations. Promising simulation results are reported showing remarkable improvements when the multiple specification band guarding criterion is used.  相似文献   
2.
In this paper we propose a design of a dependable self-organizing and adaptive mixed-signal SoC. We introduce an Artificial Hormone System (AHS) as a general control mechanism, which addresses the goals of organic computing methodology. Regarding the coexistence of digital and analog components in SoCs, we developed two new AHS implementations, one pure analog approach and one mixed-signal approach. Besides the basics of the hormone based control mechanisms, especially for the analog domain, this paper adapts the AHS upon mixed-signal SoC and presents the evaluation of a completely simulated AHS-controlled SoC. This evaluation verifies the approaches including stability issues as well as upper timing bounds and shows the improvement achieved on the system reliability. We also state the advantages from the hormone system compared to other approaches, as well as the strong points of the different hormone systems to one another.  相似文献   
3.
This is a brief review of the recent work on the prospective hybrid CMOS/nanowire/nanodevice (“CMOL”) circuits including digital memories, reconfigurable Boolean-logic circuits, and mixed-signal neuromorphic networks. The basic idea of CMOL circuits is to combine the advantages of CMOS technology (including its flexibility and high fabrication yield) with the extremely high potential density of molecular-scale two-terminal nanodevices. Relatively large critical dimensions of CMOS components and the “bottom-up” approach to nanodevice fabrication may keep CMOL fabrication costs at affordable level. At the same time, the density of active devices in CMOL circuits may be as high as 1012 cm2 and that they may provide an unparalleled information processing performance, up to 1020 operations per cm2 per second, at manageable power consumption.  相似文献   
4.
The concept of model-based test was developed in order to reduce the production test effort for data converters (Cherubal and Chatterjee (IEEE Trans Circuits Syst part I 50(3):317–327, 2003); Stenbakken and Souders (1985) Modelling and test point selection for data converter testing. In: ITC, Int Test Conf, pp 813–817; Wegener and Kennedy (IEEE Trans Circuits Syst I 51(1):213–217, 2004); Wrixon and Kennedy (IEEE Trans Instrum Meas IM-48(5):978–985, 1999)). In applying this concept, a vector of model parameters is determined for each device under test (DUT). Typically, this model parameter vector is merely used to calculate the DUT performance characteristic which is then subject to specification-oriented testing. However, each element of the model parameter vector represents an independent error source which contributes to performance degradations; thus, the model parameter vector can be viewed as a signature of the error sources. In this work, analyzing the error source signature is used to devise a model-based methodology for hard-fault detection and diagnosis. We investigate conditions under which hard-faults are detectable/diagnosable in spite of masking effects due to manufacturing process variations. In particular, we show that taking the model parameter vector as the fault signature is optimal as it minimizes the masking effects and thus maximizes detectability/diagnosibility.
Michael Peter KennedyEmail:

Carsten Wegener   has been awarded the academic degree of a “Diplom-Ingenieur” in Electronic Circuits and Systems by the Technical University of Dresden, Germany, in 1997. During a period of two years, 1996 through 1998, he attended the lecture series for the “Vordiplom” in Mathematics at Humboldt-University at Berlin, Germany. In Spring 1998, he moved permanently to Ireland, where he started to work with the Test Department of Analog Devices B.V. in Limerick. In Autumn of the same year he took up his PhD-studies with Dr M.P. Kennedy in the area of model-based testing of mixed-signal integrated circuits. He has been awarded the PhD degree by the National University of Ireland in December 2003. In 2006, Carsten moved to Germany working with Infineon Technologies AG as an Analog Mixed-signal Design-for-Test Engineer on innovative data converter test approaches. He has contributed to numerous conferences, publishing works in areas of nonlinear oscillator dynamics and mixedsignal testing. In Ireland, he has taught MATLAB courses to design and test engineers at Analog Devices B.V., and graduate courses on “Digital Design-for-Test” and “Mixed-signal Test and Testability” at the Department of Microelectronic Engineering, University College Cork. Michael Peter Kennedy   received the B.E. degree in electronics from the National University of Ireland in 1984, and the M.S. and Ph.D. degrees from the University of California at Berkeley (UC Berkeley) in 1987 and 1991, respectively, for his contributions to the study of neural networks and nonlinear dynamics. He worked as a Design Engineer with Philips Electronics, a Postdoctoral Research Engineer with the Electronics Research Laboratory, UC Berkeley, and as a Professeur Invite with the EPFL, Switzerland. He returned to University College Dublin in 1992 as a College Lecturer in the Department of Electronic and Electrical Engineering. He was appointed Professor of Microelectronic Engineering in 2000 and Vice-President for Research in 2005 at University College Cork. He has published 200 articles in the area of nonlinear circuits and systems and has taught courses on nonlinear dynamics and chaos. His research interests are nonlinear circuits and systems for applications in communications and signal processing. Since 1995 he has been active in research into algorithms for mixed-signal testing. Since 1994, he has led international basic and applied research projects on chaotic communications valued at over USD 2M. Dr. Kennedy was elected a Fellow of the IEEE in 1998. He received the Third Millenium Medal from the IEEE in 2000, the IEEE Circuits and Systems Society Golden Jubilee Medal, and the inaugural Parson’s Award for excellence in Engineering Sciences from the Royal Irish Academy in 2001.  相似文献   
5.
6.
重掺杂型混合信号集成电路衬底的噪声模型研究   总被引:3,自引:2,他引:1  
应用器件模拟软件SILVACO模拟三种结构重掺杂型衬底中注入高频电流的分布,根据模拟结果分析得出重掺杂型衬底的简化模型为一单节点,进而将简化模型与实际的混合信号集成电路结合,建立起重掺杂型衬底的噪声模型,并给出了参数估算式。  相似文献   
7.
This paper extends a study performed by the authors in previous papers dealing with the OBT approach applied to low-pass modulators ‘Microelectron. J. 33/10 (2002) 799’, showing herein the specific features associated to the bandpass case. A practical feedback strategy will be proposed in order to built an effective oscillator, which can be valuable for testing purposes. Critical points of the proposed OBT solution will be considered in order to establish useful guidelines to apply this test approach to generic bandpass ΣΔ modulators.  相似文献   
8.
An application of behavioral modeling for mixed-signal test generation and applied results are presented. It is shown that test debugging can be provided in the verification test system before silicon by utilizing simulated behavioral mixed-signal models. Due to the behavioral modeling technique, the computational performance was enhanced to a level allowing efficient test development and debugging. Influence on efficiency in design methods is reported.  相似文献   
9.
In this work a test strategy for analog circuits based on spectral analysis is proposed. The test strategy is blind, in the sense that only statistical information about the input signal is needed, but no sampling of the input signal is required. This feature allows the test of analog circuits with minimum analog hardware addition. In the context of Systems-on-Chip, this strategy needs only the inclusion of a small random signal generator, and transfers most of the signal processing to the digital domain, allowing the use of a purely digital tester or a digital BIST technique. This paper presents the underlying principle of the method and experimental test results for linear analog systems.  相似文献   
10.
A new time-multiplexed architecture is proposed for mixed-signal neural networks. MRIII is used for training the network which is more robust for implementing mixed-signal designs. The problem of node addressing and routing for implementing the MRIII is solved by performing the operations in current mode and using a counter. Arrays of mixed-signal multiplying-digital-to-analog (MDAC) blocks are used for synaptic multiplication. A compact architecture with a more linear transfer function is proposed for the MDAC to reduce the area, power consumption and noise. The proposed network is implemented using TSMC CMOS 0.18 μ technology. The results of an XOR (2-2-1) network are presented to show the generality of the design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号