首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1816篇
  免费   31篇
  国内免费   120篇
化学   557篇
晶体学   26篇
力学   16篇
数学   23篇
物理学   801篇
无线电   544篇
  2024年   2篇
  2023年   54篇
  2022年   26篇
  2021年   29篇
  2020年   34篇
  2019年   14篇
  2018年   32篇
  2017年   48篇
  2016年   51篇
  2015年   49篇
  2014年   111篇
  2013年   91篇
  2012年   71篇
  2011年   131篇
  2010年   87篇
  2009年   91篇
  2008年   109篇
  2007年   165篇
  2006年   122篇
  2005年   77篇
  2004年   73篇
  2003年   49篇
  2002年   48篇
  2001年   58篇
  2000年   29篇
  1999年   31篇
  1998年   91篇
  1997年   40篇
  1996年   30篇
  1995年   24篇
  1994年   19篇
  1993年   11篇
  1992年   16篇
  1991年   9篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   4篇
  1972年   1篇
  1967年   1篇
排序方式: 共有1967条查询结果,搜索用时 46 毫秒
1.
Textured surface is commonly used to enhance the efficiency of silicon solar cells by reducing the overall reflectance and improving the light scattering. In this study, a comparison between isotropic and anisotropic etching methods was investigated. The deep funnel shaped structures with high aspect ratio are proposed for better light trapping with low reflectance in crystalline silicon solar cells. The anisotropic metal assisted chemical etching (MACE) was used to form the funnel shaped structures with various aspect ratios. The funnel shaped structures showed an average reflectance of 14.75% while it was 15.77% for the pillar shaped structures. The average reflectance was further reduced to 9.49% using deep funnel shaped structures with an aspect ratio of 1:1.18. The deep funnel shaped structures with high aspect ratios can be employed for high performance of crystalline silicon solar cells.  相似文献   
2.
Light-emitting field effect transistors (LEFETs) are a class of organic optoelectronic device capable of simultaneously delivering the electrical switching characteristics of a transistor and the light emission of a diode. We report on the temperature dependence of the charge transport and emissive properties in a model organic heterostructure LEFET system from 300 K to 135 K. We study parameters such as carrier mobility, brightness, and external quantum efficiency (EQE), and observe clear thermally activated behaviour for transport and injection. Overall, the EQE increases with decreasing temperature and conversely the brightness decreases. These contrary effects can be explained by a higher recombination efficiency occurring at lower temperatures, and this insight delivers new knowledge concerning the optimisation of both the transport and emissive properties in LEFETs.  相似文献   
3.
The strong tendency of organic nanoparticles to rapidly self‐assemble into highly aligned superlattices at room temperature when solution‐cast from dispersions or spray‐coated directly onto various substrates is described. The nanoparticle dispersions are stable for years. The novel precipitation process used is believed to result in molecular distances and alignments in the nanoparticles that are not normally possible. Functional organic light‐emitting diodes (OLEDs)—which have the same host–dopant emissive‐material composition—with process‐tunable electroluminescence have been built with these nanoparticles, indicating the presence of novel nanostructures. For example, only changing the conditions of the precipitation process changes the OLED emission from green light to yellow.  相似文献   
4.
In this paper, we describe a method for increasing the external efficiency of polymer light‐emitting diodes (LEDs) by coupling out waveguided light with Bragg gratings. We numerically model the waveguide modes in a typical LED structure and demonstrate how optimizing layer thicknesses and reducing waveguide absorption can enhance the grating outcoupling. The gratings were created by a soft‐lithography technique that minimizes changes to the conventional LED structure. Using one‐dimensional and two‐dimensional gratings, we were able to increase the forward‐directed emission by 47 % and 70 %, respectively, and the external quantum efficiency by 15 % and 25 %.  相似文献   
5.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   
6.
The electronic properties, carrier injection, and transport into poly(9,9‐dioctylfluorene) (PFO), PFO end‐capped with hole‐transporting moieties (HTM), PFO–HTM, and PFO end‐capped with electron‐transporting moieties (ETM), PFO–ETM, were investigated. The data demonstrate that charge injection and transport can be tuned by end‐capping with HTM and ETM, without significantly altering the electronic properties of the conjugated backbone. End‐capping with ETM resulted in more closely balanced charge injection and transport. Single‐layer electrophosphorescent light‐emitting diodes (LEDs), fabricated from PFO, PFO–HTM and PFO–ETM as hosts and tris[2,5‐bis‐2′‐(9′,9′‐dihexylfluorene)pyridine‐κ2NC3′]iridium(III ), Ir(HFP)3 as the guest, emitted red light with brightnesses of 2040 cd m–2, 1940 cd m–2 and 2490 cd m–2 at 290 mA cm–2 (16 V) and with luminance efficiencies of 1.4 cd A–1, 1.4 cd A–1 and 1.8 cd A–1 at 4.5 mA cm–2 for PFO, PFO–HTM, and PFO–ETM, respectively.  相似文献   
7.
8.
Highly efficient orange and green emission from single‐layered solid‐state light‐emitting electrochemical cells based on cationic transition‐metal complexes [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 (where ppy is 2‐phenylpyridine, dFppy is 2‐(2,4‐difluorophenyl)pyridine, and sb is 4,5‐diaza‐9,9′‐spirobifluorene) is reported. Photoluminescence measurements show highly retained quantum yields for [Ir(ppy)2sb]PF6 and [Ir(dFppy)2 sb]PF6 in neat films (compared with quantum yields of these complexes dispersed in m‐bis(N‐carbazolyl)benzene films). The spiroconfigured sb ligands effectively enhance the steric hindrance of the complexes and reduce the self‐quenching effect. The devices that use single‐layered neat films of [Ir(ppy)2sb]PF6 and [Ir(dFppy)2sb]PF6 achieve high peak external quantum efficiencies and power efficiencies of 7.1 % and 22.6 lm W–1) at 2.5 V, and 7.1 % and 26.2 lm W–1 at 2.8 V, respectively. These efficiencies are among the highest reported for solid‐state light‐emitting electrochemical cells, and indicate that cationic transition‐metal complexes containing ligands with good steric hindrance are excellent candidates for highly efficient solid‐state electrochemical cells.  相似文献   
9.
Twenty-five years ago, we introduced the phenomenon of negative luminescence (NL) into semiconductor physics. This paper provides an overview of work conducted to develop this fundamental concept. Initially, we consider the first-principle approach to radiation interaction with basic matter and the major properties of NL. Then we describe the problems of NL direct measurements in homogeneous materials and structures. Finally, we emphasize the use of NL approach in applications involving devices for infrared (IR) wavelength (3–12 μm) high-temperature (300–400 K) optoelectronics. Our subjects will include NL IR emitting diodes, radiative coolers, IR dynamic scene simulators, light up-conversion devices, and the Stealth effect in IR.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号