首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62440篇
  免费   7213篇
  国内免费   10394篇
化学   45232篇
晶体学   3679篇
力学   1060篇
综合类   289篇
数学   2215篇
物理学   14937篇
无线电   12635篇
  2024年   113篇
  2023年   766篇
  2022年   1205篇
  2021年   1590篇
  2020年   1964篇
  2019年   1940篇
  2018年   1666篇
  2017年   2250篇
  2016年   2488篇
  2015年   2288篇
  2014年   3176篇
  2013年   5418篇
  2012年   3810篇
  2011年   4256篇
  2010年   3701篇
  2009年   4193篇
  2008年   4253篇
  2007年   4341篇
  2006年   4266篇
  2005年   3882篇
  2004年   3487篇
  2003年   2847篇
  2002年   2358篇
  2001年   1865篇
  2000年   1743篇
  1999年   1497篇
  1998年   1266篇
  1997年   1118篇
  1996年   1093篇
  1995年   1006篇
  1994年   910篇
  1993年   753篇
  1992年   649篇
  1991年   441篇
  1990年   240篇
  1989年   209篇
  1988年   178篇
  1987年   117篇
  1986年   99篇
  1985年   107篇
  1984年   78篇
  1983年   50篇
  1982年   55篇
  1981年   58篇
  1980年   57篇
  1979年   51篇
  1978年   37篇
  1977年   33篇
  1976年   25篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 469 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
3.
Noncentrosymmetric (NCS) tetrel pnictides have recently generated interest as nonlinear optical (NLO) materials due to their second harmonic generation (SHG) activity and large laser damage threshold (LDT). Herein nonmetal-rich silicon phosphides RuSi4P4 and IrSi3P3 are synthesized and characterized. Their crystal structures are reinvestigated using single crystal X-ray diffraction and 29Si and 31P magic angle spinning NMR. In agreement with previous report RuSi4P4 crystallizes in NCS space group P1, while IrSi3P3 is found to crystallize in NCS space group Cm, in contrast with the previously reported space group C2. A combination of DFT calculations and diffuse reflectance measurements reveals RuSi4P4 and IrSi3P3 to be wide bandgap (Eg) semiconductors, Eg = 1.9 and 1.8 eV, respectively. RuSi4P4 and IrSi3P3 outperform the current state-of-the-art infrared SHG material, AgGaS2, both in SHG activity and laser inducer damage threshold. Due to the combination of high thermal stabilities (up to 1373 K), wide bandgaps (≈2 eV), NCS crystal structures, strong SHG responses, and large LDT values, RuSi4P4 and IrSi3P3 are promising candidates for longer wavelength NLO materials.  相似文献   
4.
5.
This paper presents a novel No-Reference Video Quality Assessment (NR-VQA) model that utilizes proposed 3D steerable wavelet transform-based Natural Video Statistics (NVS) features as well as human perceptual features. Additionally, we proposed a novel two-stage regression scheme that significantly improves the overall performance of quality estimation. In the first stage, transform-based NVS and human perceptual features are separately passed through the proposed hybrid regression scheme: Support Vector Regression (SVR) followed by Polynomial curve fitting. The two visual quality scores predicted from the first stage are then used as features for the similar second stage. This predicts the final quality scores of distorted videos by achieving score level fusion. Extensive experiments were conducted using five authentic and four synthetic distortion databases. Experimental results demonstrate that the proposed method outperforms other published state-of-the-art benchmark methods on synthetic distortion databases and is among the top performers on authentic distortion databases. The source code is available at https://github.com/anishVNIT/two-stage-vqa.  相似文献   
6.
7.
《Mendeleev Communications》2022,32(1):105-108
A mixed-metal 1D coordination polymer [CaCu(HBTC)2(H2O)8]n (where H3BTC – benzene-1,3,5-tric arboxylic acid) was obtained in a solvothermal synthesis of a well-known copper-containing metal–organic framework [Cu3(BTC)2(H2O)3]n (HKUST-1) in autoclaves 3D-printed from commercial polypropylene. This material was a source of calcium ions, apparently, leaking from a colorant (calcium carbonate) promoted by glacial acetic acid as a modulator used to produce large single crystals of HKUST-1. This finding was confirmed by elemental analysis and a model experiment that resulted in a new calcium-based 1D coordination polymer [Ca(H2BTC)2(H2O)5]n under the same solvothermal conditions with no copper or calcium salts put into a 3D-printed autoclave.  相似文献   
8.
《Mendeleev Communications》2022,32(4):537-539
The two novel conglomerates were obtained by crystallization of racemic (2'S,3aS,6aR)/(2'R,3aR,6aS) (glycoluril-1-yl)-3-methylbutanoic acid and (2'R,3aR,6aR)/(2'S,3aS,6aS) (4,6-dimethylglycoluril-1-yl)pentanoic acid synthesized by highly diastereoselective condensation of 4,5-dihydroxy- imidazolidin-2-ones with racemic ureido acids. The differences in the molecular geometry of synthesized racemates were studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna21 and P212121, respectively  相似文献   
9.
Herein, we successfully construct the 3D biocompatible graphene through crosslinking 2D graphene nanosheet onto carbon fiber paper with poly(diallyldimethylammonium chloride) (PDDA) as anode of the alcohol biofuel cell. Compared with the bioanode without 3D graphene, the current density and output power of PDDA-graphene-ADH bioanode is increased by 23 % and 41 % at a high concentration of ethanol at pH 8.9, suggesting the stabilization role of graphene in enzyme loading. The study provides us a deep analysis on structures and performances of the bioanode incl. electrochemistry, X-ray photoelectron spectra, and atomic force microscopy images, which is significant to develop the new methods to construct 3D porous electrodes in energy conversion device.  相似文献   
10.
Treating neuroinflammation-related injuries and disorders through manipulation of neuroinflammation functions is being heralded as a new therapeutic strategy. In this study, a novel pectic galactan (PG) polysaccharide based gene therapy approach is developed for targeting reactive gliosis in neuroinflammation. Galectin-3 (Gal-3) is a cell protein with a high affinity to β-galactoside sugars and is highly expressed in reactive gliosis. Since PG carries galactans, it can target reactive gliosis via specific carbohydrate interaction between galactan and Gal-3 on the cell membrane, and therefore can be utilized as a carrier for delivering genes to these cells. The carrier is synthesized by modifying quaternary ammonium groups on the PG. The resulting quaternized PG (QPG) is found to form complexes with plasmid DNA with a mean diameter of 100 nm and have the characteristics required for targeted gene therapy. The complexes efficiently condense large amounts of plasmid per particle and successfully bind to Gal-3. The in vivo study shows that the complexes are biocompatible and safe for administration and can selectively transfect reactive glial cells of an induced cortical lesion. The results confirm that this PG-based delivery system is a promising platform for targeting Gal-3 overexpressing neuroinflammation cells for treating neuroinflammation-related injuries and neurodegenerative diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号