首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
无线电   3篇
  2007年   2篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Wireless mesh networks (WMNs) have been proposed to provide cheap, easily deployable and robust Internet access. The dominant Internet-access traffic from clients causes a congestion bottleneck around the gateway, which can significantly limit the throughput of the WMN clients in accessing the Internet. In this paper, we present MeshCache, a transparent caching system for WMNs that exploits the locality in client Internet-access traffic to mitigate the bottleneck effect at the gateway, thereby improving client-perceived performance. MeshCache leverages the fact that a WMN typically spans a small geographic area and hence mesh routers are easily over-provisioned with CPU, memory, and disk storage, and extends the individual wireless mesh routers in a WMN with built-in content caching functionality. It then performs cooperative caching among the wireless mesh routers.We explore two architecture designs for MeshCache: (1) caching at every client access mesh router upon file download, and (2) caching at each mesh router along the route the Internet-access traffic travels, which requires breaking a single end-to-end transport connection into multiple single-hop transport connections along the route. We also leverage the abundant research results from cooperative web caching in the Internet in designing cache selection protocols for efficiently locating caches containing data objects for these two architectures. We further compare these two MeshCache designs with caching at the gateway router only.Through extensive simulations and evaluations using a prototype implementation on a testbed, we find that MeshCache can significantly improve the performance of client nodes in WMNs. In particular, our experiments with a Squid-based MeshCache implementation deployed on the MAP mesh network testbed with 15 routers show that compared to caching at the gateway only, the MeshCache architecture with hop-by-hop caching reduces the load at the gateway by 38%, improves the average client throughput by 170%, and increases the number of transfers that achieve a throughput greater than 1 Mbps by a factor of 3.  相似文献   
2.
Wireless sensor and actor networks: research challenges   总被引:46,自引:0,他引:46  
Ian F.  Ismail H.   《Ad hoc Networks》2004,2(4):351-367
Wireless sensor and actor networks (WSANs) refer to a group of sensors and actors linked by wireless medium to perform distributed sensing and acting tasks. The realization of wireless sensor and actor networks (WSANs) needs to satisfy the requirements introduced by the coexistence of sensors and actors. In WSANs, sensors gather information about the physical world, while actors take decisions and then perform appropriate actions upon the environment, which allows a user to effectively sense and act from a distance. In order to provide effective sensing and acting, coordination mechanisms are required among sensors and actors. Moreover, to perform right and timely actions, sensor data must be valid at the time of acting. This paper explores sensor-actor and actor-actor coordination and describes research challenges for coordination and communication problems.  相似文献   
3.
L.  A.  G.  S.   《Ad hoc Networks》2007,5(6):872-884
Geographic forwarding is an emerging paradigm for communications between nodes in sensor networks. No exchange of location information is required, and nodes only have to know their own coordinates and those of the destination. Due to the device’s limited processing and storage capabilities, a simplified protocol architecture should be designed so as to make communications in these networks efficient and simple at the same time. Moreover, sensor nodes are battery supplied and, thus, protocol design should be aimed at reducing energy consumption in order to increase network lifetime. In this perspective, one sensor feature recently regarded as of key importance, is the ability to tune the transmission power. This allows the communication range to be varied according to node density and connectivity constraints. In this paper we propose an integrated cross-layer protocol, called MACRO, which integrates MAC and routing layer functionalities in order to support geographic forwarding in wireless sensor networks. In MACRO, a competition is triggered to select the best next relay node while forwarding information to the destination. The competition is based on the evaluation of a weighted progress factor representing the progress towards the destination per unit of transmission power. An analytical paradigm facilitating the most appropriate choice of the next relay is proposed. The proposed solution is assessed through both analysis and ns-2 simulations. Performance results show the advantages of the proposed solution when compared to other geographic forwarding protocols which do not exploit cross-layer features.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号