首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  国内免费   1篇
化学   8篇
物理学   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2009年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1980年   1篇
排序方式: 共有10条查询结果,搜索用时 328 毫秒
1
1.
2.
Attempts to optimize heterogeneous catalysis often lack quantitative comparative analysis. The use of kinetic modelling leads to rate (k) and relative sorption equilibrium constants (K), which can be further rationalized using Quantitative Structure-Property Relationships (QSPR) based on Multiple Linear Regressions (MLR). Friedel-Crafts acylation using commercial and hierarchical BEA zeolites as heterogeneous catalysts, acetic anhydride as the acylating agent, and a set of seven substrates with different sizes and chemical functionalities were herein studied. Catalytic results were correlated with the physicochemical properties of substrates and catalysts. From this analysis, a robust set of equations was obtained allowing inferences about the dominant factors governing the processes. Not entirely surprising, the rate and sorption equilibrium constants were found to be explained in part by common factors but of opposite signs: higher and stronger adsorption forces increase reaction rates, but they also make the zeolite active sites less accessible to new reactant molecules. The most relevant parameters are related to the substrates’ molecular size, which can be associated with different reaction steps, namely accessibility to micropores, diffusion capacity, and polarizability of molecules. The relatively large set of substrates used here reinforces previous findings and brings further insights into the factors that hamper/speed up Friedel-Crafts reactions in heterogeneous media.  相似文献   
3.
Ag+ was introduced into *BEA-type zeolite membrane by an ion-exchange method to enhance olefin selectivity. Ag−*BEA membrane exhibited superior olefin separation performance for both ethylene/ethane and propylene/propane mixtures. Particularly, the separation factor for ethylene at 373 K reached 57 with the ethylene permeance of 1.6×10−7 mol m−2 s−1 Pa−1. Adsorption properties of olefin and paraffin were evaluated to discuss contribution of Ag+ to separation performance enhancement. A strong interaction between olefin and Ag+ in the membrane caused preferential adsorption of olefin against paraffin, leading to selective permeation of olefin. Ag−*BEA membrane also exhibited high olefin selectivities from olefin/N2 mixtures. The affinity-based separation through Ag−*BEA membrane showed a high potential for olefin recovery and purification from various gas mixtures.  相似文献   
4.
随着beta分子筛负载双金属催化剂的开发,乙醇一步法制1,3-丁二烯}取得了突破性进展. 然而,从乙醇到丁二烯的反应机理复杂,尚未完全阐明,也缺乏基于中心金属原子的催化剂筛选. 本文采用密度泛函理论计算方法,系统地研究了乙醇在Zn-Y/BEA催化剂上一步法制丁二烯的机理. 结果表明,乙醇脱氢更倾向于在Zn位点进行,决速步骤的反应热仅为0.77 eV;羟醇缩合生成丁二烯更倾向于在Y位点进行,决速步骤的反应热仅为0.69 eV. 基于所揭示的反应机理,选择了六种元素代替Y来筛选用于该反应的Zn-M/BEA(M=Sn、Nb、Ta、Hf、Zr、Ti)的优良组合. 结果表明,与其他六种催化剂相比,Zn-Y/BEA仍是最优选的催化剂,Zn-Zr/BEA、Zn-Ti/BEA和 Zn-Sn/BEA也是乙醇转化为丁二烯的可行催化剂. 本工作不仅揭示了Zn-Y/BEA催化乙醇一步法制丁二烯的反应机理,而且为该反应提供了其他可能的催化剂选择.  相似文献   
5.
Ru–BEA catalysts with 1.0–2.5 wt.% Ru were prepared by ion exchange. The acidic properties of these catalysts were investigated using deuterated acetonitrile, pyridine, and 2,6-di-tert-butyl-pyridine. The deposited Ru was studied by CO-FTIR spectroscopy. The materials were tested as catalysts in the hydrogenation of a conjugated cyclic keto–enol, namely, 5-hydroxymethylene-5H-6,7-dihydrodibenzo[a,c]cyclohepten-6-one. Beside hydrogenation, hydrogenolysis products were identified by GC–MS and 1H NMR techniques. Relations were sought between the selectivity and some physicochemical properties of the catalyst.  相似文献   
6.
报道了在兰州重离子加速器国家实验室测量动能为2.4 MeV的Xeq+(q=10, 15, 20, 26)轰击Au表面辐射的X射线的实验数据. 实验结果表明, Au的M-X射线有不同程度的能移, 这是由于入射过程引起了靶原子内壳层的多电离, 多电离的程度主要取决于离子的外壳层电子分布. 计算了X射线产额, 并与BEA理论计算值进行了比较, 讨论了电荷态对X射线产额的影响.  相似文献   
7.
 In order to obtain more accurate experimental values of X-ray emission cross sections, resulting from the interaction of ion with atoms, we have measured them for the K-inner-shell of Cr and Cu elements using a proton beam of energy range 1–2.3 MeV. The experimental data obtained in the present work are compared with the theoretical calculations given by the two models BEA (binary encounter approximation) and ECPSSR (energy coulombian perturbed stationary state relativistic). Also, the present experimental results are compared with those obtained by Paul and Sachert. The comparison shows a good agreement between the previous and the present data with a slight improvement in the measurement accuracy for Cr. From the theoretical point of view, agreement with the experimental data is observed only for the ECPSSR predictions, while the BEA’s cross section calculations at higher energies are approximately 20% lower than the present experimental values.  相似文献   
8.
The one-step conversion of ethanol to 1, 3-butadiene has achieved a breakthrough with the development of beta zeolite supported dual metal catalysts. However, the reaction mechanism from ethanol to butadiene is complex and has not yet been fully elucidated, and no catalyst screening effort has been done based on central metal atoms. In this work, density functional theory (DFT) calculations were employed to study the mechanism of one-step conversion of ethanol to butadiene over Zn-Y/BEA catalyst. The results show that ethanol dehydrogenation prefers to proceed on Zn site with a reaction energy of 0.77 eV in the rate-determining step, and the aldol condensation to produce butadiene prefers to proceed on Y site with a reaction energy of 0.69 eV in the rate-determining step. Based on the mechanism revealed, six elements were selected to replace Y for screening superior combination of Zn-M/BEA (M=Sn, Nb, Ta, Hf, Zr, Ti; BEA: beta polymorph A) for this reaction. As a result, Zn-Y/BEA (0.69 eV) is proven to be the most preferring catalyst compared with the other six ones, and Zn-Zr/BEA (0.85 eV), Zn-Ti/BEA (0.87 eV), and Zn-Sn/BEA (0.93 eV) can be potential candidates for the conversion of ethanol to butadiene. This work not only provides mechanistic insights into one-step catalytic conversion of ethanol to butadiene over Zn-Y/BEA catalyst but also offers more promising catalyst candidates for this reaction.  相似文献   
9.
10.
Summary A commercial NaBEA sample was exchanged, at different levels, with NH4+cations through conventional and microwave promoted methods. The dependence of the acidic and catalytic properties of the HNaBEA samples with the exchange degree was analyzed. It was observed that the catalytic activity of the exchanged samples for methylcyclohexane cracking depends on the exchange method, whereas surface acidity, determined by pyridine adsorption followed by IR spectroscopy and temperature programmed desorption of NH3, do not.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号