首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  国内免费   3篇
化学   2篇
综合类   1篇
数学   1篇
物理学   47篇
无线电   8篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2007年   6篇
  2003年   2篇
  1998年   1篇
  1994年   2篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
1.
冬小麦是中国主要的粮食作物之一,准确及时地获取冬小麦物候信息是冬小麦长势监测和产量预估的必要条件。星载合成孔径雷达(SAR)是一种微波遥感设备,具有全天时、全天候的优势,可实现对周期性农作物物候期大范围监测。基于时间序列Sentinel-1A SAR数据,提出一种星载双极化SAR冬小麦物候期识别方法。该方法基于特征值分解和极化散射分析技术,提取不同物候期冬小麦的后向散射系数、极化熵、主导散射角等参数,实现冬小麦物候期识别。实验结果表明,物候期识别总体精确度达到79%。该方法在冬小麦生长监测方面具有实用推广价值。  相似文献   
2.
当作物生物量较大时,现有植被指数由于受饱和问题限制,不能较好的估算作物生物量。针对此问题,尝试将波段深度分析与偏最小二乘回归(partial least square regression,PLSR)结合,提高对大田冬小麦生物量的估算精度,并将两者结合建立的模型与应用代表性植被指数建立的模型进行生物量估算精度比较。波段深度分析主要对冬小麦冠层光谱550~750nm范围进行,采用波段深度、波段深度比(band depth ratio,BDR)、归一化波段深度指数和归一化面积波段深度对波段深度信息进行表征。在建立的模型中,波段深度分析和PLSR结合的估算精度比应用植被指数模型的精度高,其中BDR与PLSR结合的估算精度最高(R2=0.792,RMSE=0.164kg.m-2)。研究结果表明波段深度分析与PLSR结合能较好的克服生物量较大时存在的饱和问题,提高冬小麦生物量的估算精度。  相似文献   
3.
作物生长的土壤中氧气浓度场的稳态数值模拟   总被引:1,自引:0,他引:1  
建立了一个描述土壤中热、湿、气耦合迁移的数学模型,对有冬小麦生长的圆柱形土壤床中的氧气浓度场进行 了数值模拟。结果表明,土壤床中的氧气浓度场与冬小麦的生长发育阶段、上壤的孔隙率以及土壤床的高度等因素密切相 关。  相似文献   
4.
研究了基于氮肥效应的冬小麦不同生育期的叶绿素浓度,探讨了XGBoost算法在冬小麦叶绿素浓度估算中的适用性。利用该算法构建了冬小麦叶绿素浓度的高光谱估算模型,并将其与偏最小二乘法(Partial Least Squares, PLS)以及人工神经网络(Neural Network, NN)算法进行了对比。结果表明:(1)冬小麦的叶绿素浓度随着氮肥用量的增加而逐渐升高。(2)基于一阶微分光谱(First-order Differential Reflectance, FDR)数据集的估算模型表现最好。通过对比建模数据集与验证数据集的决定系数R2和相对分析误差(Residual Predictive Derivation, RPD)发现,XGBoost算法的效果最佳。(3)通过波段重要性分析发现,XGBoost算法的8个重要波段均在738~753 nm范围内。与8个常用的红边指数相比,通过XGBoost算法筛选到的8个一阶微分光谱波段对叶绿素浓度的准确估算起到了更加重要的作用。该算法可以作为一种有效的高光谱信息挖掘手段来估算冬小麦的叶绿素浓度。  相似文献   
5.
基于MODIS温度植被角度指数的农作物估产模型研究   总被引:1,自引:0,他引:1  
利用MODIS数据,以河北石家庄和邢台地区冬小麦产量估算为例,探讨了综合植被指数与陆表温度的温度植被角度指数在农作物估产中的应用研究.首先,根据冬小麦物候历,计算了冬小麦抽穗期四种参量指数:归一化植被指数(NDVI)、增强型植被指数(EVI)、温度植被角度指数(TVA)和增强型温度植被角度指数(ETVA);其次,将实测的冬小麦产量数据与NDVI、EVI、VTA和EVTA数据进行回归分析,建立模型.结果表明,实测产量数据与这四种指数均具有很好的线性回归关系,相关系数R2均在0.60以上(分别为0.61、0.65、0.68、0.74),其中基于TVA和ETVA的估产模型要好于NDVI和EVI模型.由此可见,综合了MODIS光学反射和辐射信息的TVA/ETVA,能有效应用于实践估产中,并提高预测的准确性.  相似文献   
6.
粮食安全是社会和谐、政治稳定和经济可持续发展的重要保障。准确预测区域乃至全球的农作物产量能够为各级政府、相关部门制定农业农村政策提供技术支持,保障粮食安全。目前关于农作物估产的研究大多具有地域性、经验性,过分依赖地面实测数据,一种基于多光谱卫星遥感数据和作物生长模型估算农作物产量的模型框架SCYM(Scalable Crop Yield Mapper)能够极大地减少模型对实测数据的依赖,快速应用于不同空间尺度、不同种类作物的估产,为多尺度农作物估产研究提供了一条有效的途径。以安徽省2012年-2018年冬小麦为研究对象,通过总结前人研究确定的敏感参数及其在研究区内的波动范围,结合大量实割实测数据优化WOFOST(WOrld FOod STudies)模型参数;将模拟产量、不同时段的模拟叶面积指数(LAI)同遴选出的天气变量训练随机森林模型,并以最佳观测日期组合下的MODIS-LAI代替对应时段的模拟LAI进行产量估算。结果表明:(1)模型产量估算值与站点实测值的总体相关性为0.758(R2为0.575),RMSE为790.92 kg·ha-1。精度较高的站点主要分布在淮北平原(<1%)而高误差区域集中于皖南丘陵地带(>40%);(2)对2012年-2018年全省范围进行冬小麦估产,根据7年平均估产结果的空间分布,小麦单产由北向南逐渐减少,高值区出现在皖北的淮北平原,低值区主要分布于皖中、皖南地区;(3)2012年-2018年实测单产平均值为6 058.00 kg·ha-1,SCYM估算单产平均值为5 984.95 kg·ha-1,且估算产量与实测产量的年际时间序列的相关性为0.822,RMSE为189.96 kg·ha-1,每年估产的相对误差均不超过6%。研究表明SCYM估产框架对安徽省冬小麦产量估算具有一定的可行性,在产量预报方面效果良好。该方法能够在一定程度上改善以往估产模型存在的地域性、经验性问题,在区域尺度的应用方面具有极大的潜力,未来可为农业估产提供极其重要的理论依据和实用价值。  相似文献   
7.
生物量、氮素含量和LAI(leaf area index)是生态系统中表征作物长势最重要的参数,叶干重、叶片氮素含量和LAI实时动态监测对小麦氮素营养诊断和管理调控具有重要意义。选用了五个小麦品种和四个氮素水平的比较实验,研究不同处理冬小麦抽穗到黄熟期氮素丰度(NR)与光谱反射率差值(ΔR)的关系,建立冬小麦后期氮素丰度监测模型。结果表明,不同品种的冬小麦冠层叶片氮素丰度随生育进程推进而增加,不同氮素处理氮素丰度大小为N0N3N1N2,光谱参量TCARI和VD672与氮素丰度的相关性最好,相关系数(r)分别为0.870和0.855,其建立氮素丰度估测模型的决定系数分别为0.757和0.731,预测准确率达84.56%和80.13%。光谱参数TCARI和VD672可以有效地评价小麦后期冠层叶片氮素状况,可以对氮素丰度进行准确可靠的监测。  相似文献   
8.
冬小麦叶面积指数(leaf area index, LAI)是进行作物长势判断和产量估测的重要农学指标之一,高光谱遥感技术为大面积、快速监测植被LAI提供了有效途径。在探讨利用最小二乘支持向量机(least squares support vector machines, LS-SVM)方法和高光谱数据对不同条件下冬小麦LAI的估算能力。在用主成分分析法(principal component analysis, PCA)对PHI航空数据降维的基础上,利用实测LAI数据和高光谱反射率数据,构建LS-SVM模型,采用独立变量法,分别估算不同株型品种、不同生育时期、不同氮素和水分处理条件下的冬小麦LAI,并与传统NDVI模型反演结果对比。结果显示,每种条件下的LS-SVM 模型都具有比NDVI模型更高的决定系数和更低的均方根误差值, 即反演精度高于相应的NDVI模型。NDVI模型对不同株型品种、不同氮素和水分条件下冬小麦LAI估算精度不稳定,LS-SVM则表现出较好的稳定性。表明LS-SVM 方法利用高光谱反射率数据对于不同条件下的冬小麦LAI反演具有良好的学习能力和普适性。  相似文献   
9.
冬小麦冻害胁迫高光谱分析与冻害严重度反演   总被引:2,自引:0,他引:2  
冬小麦冻害严重度的精确反演是及时采取补救措施降低损失的关键,同时及时预测产量损失对政府职能部门也具有积极意义。针对冬小麦冻害群体严重度评估方法在经典统计反演模型存在估算效果不理想的情况下,以冬小麦为试验对象,首先对冬小麦冠层光谱反射率数据进行重采样平滑处理,再用主成分分析(PCA)技术对高光谱数据进行分析,进一步实现综合原始光谱主成分信息作为自变量参与冬小麦冻害严重度反演过程,最后采用决定系数R2、均方根误差RMSE、准确度Accuracy三种模型精度验证方法对模型进行评价。结果显示,基于主成分分析法建立冬小麦冻害严重度模型精度分别达0.697 5,0.184 2和0.697 5;同时对反演模型进行验证,其精度也分别达到0.630 9,0.350 3和1.339 6。因此,该方法能有效地对冬小麦冻害严重度进行快速、精确的反演。  相似文献   
10.
冬小麦不同生育时期叶面积指数反演方法   总被引:20,自引:0,他引:20  
针对当前作物叶面积指数遥感反演过程中,在不同生育时期采用相同的植被指数进行反演存在叶面积指数反演精度较低的问题。以冬小麦为研究对象,选取了对冬小麦覆盖度响应程度不同的六种宽带和四种窄带共10种植被指数,分析比较了在冬小麦整个生育期选用当前广泛使用的归一化植被指数(NDVI)反演冬小麦的LAI和在冬小麦不同生长阶段选用不同的植被指数反演冬小麦LAI的结果差异。在冬小麦整个生育期内使用NDVI反演小麦LAI得到的LAI反演值和真实值之间的R2=0.558 5,RMSE=0.320 9。改进的比值植被指数(mSR)适合于反演冬小麦生长前期(拔节期之前)的LAI,得到的LAI反演值和真实值之间的相关系数r=0.728 7,均方根误差RMSE=0.297 1;比值植被指数(SR)适于反演冬小麦生长中期(拔节到抽穗前),得到的LAI反演值和真实值之间的R2=0.654 6,RMSE=0.306 1;NDVI适于反演冬小麦生长后期(抽穗到成熟期)的LAI,得到的LAI反演值和真实值之间的R2=0.679 4,均方根误差RMSE=0.316 4。 研究表明:在冬小麦的不同生育时期,根据地表作物覆盖度的变化和反射率的变化,选择不同的植被指数建立冬小麦LAI的反演模型获得的反演精度均高于在冬小麦整个生育期使用NDVI获得的反演结果。说明在冬小麦的不同生育时期选择不同的植被指数构建LAI的分段反演模型可以改善冬小麦LAI的反演精度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号