首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   79篇
  国内免费   23篇
化学   132篇
晶体学   5篇
力学   7篇
综合类   1篇
数学   4篇
物理学   153篇
  2024年   1篇
  2023年   9篇
  2022年   5篇
  2021年   10篇
  2020年   21篇
  2019年   21篇
  2018年   22篇
  2017年   19篇
  2016年   14篇
  2015年   15篇
  2014年   24篇
  2013年   22篇
  2012年   22篇
  2011年   26篇
  2010年   12篇
  2009年   10篇
  2008年   17篇
  2007年   14篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2001年   2篇
  2000年   1篇
  1997年   1篇
  1994年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
1.
Aqueous self-assembly of short peptides has attracted growing attention for the construction of supramolecular materials for various bioapplications. Herein, we describe how the thermolysin-assisted biocatalytic construction of a dipeptide hydrazide from an N-protected amino acid and an amino acid hydrazide leads to the formation of thermally stable supramolecular hydrogels. In addition, we demonstrate the post-assembly modification of the supramolecular architectures constructed in situ tethering hydrazide groups as a chemical handle by means of fluorescence imaging.  相似文献   
2.
Multiple zigzag chains Zm,n of length n and width m constitute an important class of regular graphene flakes of rectangular shape. The physical and chemical properties of these basic pericondensed benzenoids can be related to their various topological invariants, conveniently encoded as the coefficients of a combinatorial polynomial, usually referred to as the ZZ polynomial of multiple zigzag chains Zm,n. The current study reports a novel method for determination of these ZZ polynomials based on a hypothesized extension to John–Sachs theorem, used previously to enumerate Kekulé structures of various benzenoid hydrocarbons. We show that the ZZ polynomial of the Zm,n multiple zigzag chain can be conveniently expressed as a determinant of a Toeplitz (or almost Toeplitz) matrix of size m2×m2 consisting of simple hypergeometric polynomials. The presented analysis can be extended to generalized multiple zigzag chains Zkm,n, i.e., derivatives of Zm,n with a single attached polyacene chain of length k. All presented formulas are accompanied by formal proofs. The developed theoretical machinery is applied for predicting aromaticity distribution patterns in large and infinite multiple zigzag chains Zm,n and for computing the distribution of spin densities in biradical states of finite multiple zigzag chains Zm,n.  相似文献   
3.
Titanate nanoribbons were prepared via a hydrothermal treatment of rutile-type TiO2 powders in a 10 M NaOH solution at 200 °C for 48 h. The as-prepared titanate nanoribbons were then hydrothermally post-treated at 150 °C for 12-36 h. The titanate nanoribbons before and after hydrothermal post-treatment were characterized with FESEM, XRD, TEM, UV-VIS and nitrogen adsorption-desorption isotherms. The results showed that the hydrothermal post-treatment not only promoted the phase transformation from titanate to anatase TiO2, but also was beneficial to the removal of Na+ ions remained in the titanate nanoribbons. After hydrothermal post-treatment, the TiO2 samples retained the one-dimensional structure feature of the titanate nanoribbons and showed an obvious increase in the specific surface area and the pore volume.  相似文献   
4.
We study the nonlinearity for the zigzag graphene nanoribbons (ZGNRs) with zigzag triangular holes (ZTHs). We show that in the presence of an external uniform magnetic field, a two-dimensional f-deformed Dirac oscillator can be used to describe the dynamics of the electrons in the ZGNRs with ZTHs. It is shown for the first time that the magnetic field direction has effect on the chirality of charge carriers in the ZGNRs punched with triangular holes. We also obtain the Landau-level spectrum in the weak and strong magnetic field regimes. Additionally, we compare Landau-level spectrum of this graphene-based device in the f-deformed scenario and original one. Our results provide a general viewpoint for the development of the zigzag graphene nanoribbons.  相似文献   
5.
6.
7.
Evaporative self-assembly (ESA), based on the “coffee-ring” effect, is a versatile technique for assembling particle solutions into mesoscale patterns and structures on different substrates. ESA works with a wide variety of organic and inorganic materials, where the solution is a combination of volatile solvent and nonvolatile solute. Modified ESA methods, such as “stop-and-go flow coating,” use a programmed meniscus “stick–slip” motion to create mesoscale assemblies with controlled shape, size, and architecture. However, current methods are not scalable for increased production volumes or patterning large surface areas. We demonstrate a new ESA method, where an oscillating blade controls the meniscus depinning and drives the evaporative assembly of solutes at the pinned meniscus. Results show that oscillation frequency and substrate speed control time/distance intervals between successive meniscus depinning, and the assembly dimensions depend on solution concentration, oscillation frequency, substrate speed, and meniscus height. We report the mechanism of the meniscus depinning and the control over assembly cross-sectional dimensions. This advance provides a scalable ESA method with faster processing times and maintained advantages. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1545–1551  相似文献   
8.
Random fluctuations of the shot-noise power in disordered graphene nanoribbons are studied. In particular, we calculate the distribution of the shot noise of nanoribbons with zigzag and armchair edge terminations. We show that the shot noise statistics is different for each type of these two graphene structures, which is a consequence of the presence of different electron localizations: while in zigzag nanoribbons electronic edge states are Anderson localized, in armchair nanoribbons edge states are absent, but electrons are anomalously localized. Our analytical results are verified by tight binding numerical simulations with random hopping elements, i.e., off diagonal disorder, which preserves the symmetry of the graphene sublattices.  相似文献   
9.
通过非平衡态分子动力学方法,研究了锯齿形石墨烯纳米带中掺杂原子硼的两种不同位置排列(三角形硼掺杂和平行硼掺杂)对热导率和热整流的影响并从理论上分析了其变化的原因。研究表明这两种硼掺杂模型在不同温度下导致石墨烯纳米带热导率大约54%-63%的下降;同时发现平行硼掺杂结构对热传递的抑制作用强于三角形硼掺杂结构;硼掺杂结构降低热导率的作用随着温度的升高逐渐减小;三角形硼掺杂结构两个方向上的热导率值具有较大差异,这种结构下的热整流随着温度的上升呈现减弱的趋势;而平行硼掺杂结构两个方向上的热导率值近乎相等,热整流现象表现不明显.  相似文献   
10.
Despite the aesthetically appealing structures and tantalizing physical and chemical properties, zigzag hydrocarbon belts and their heteroatom-embedded analogues remain challenging synthetic targets. We report herein the synthesis of diverse O/N-doped zigzag hydrocarbon belts based on selective bridging of the fjords of resorcin[4]arene derivatives through intramolecular SNAr and palladium-catalyzed intermolecular C−N bond formation reactions. Preorganized conformations of mono-macrocyclic, half-belt and quasi-belt compounds were revealed to facilitate cyclization reactions to construct heteroatom-linked octahydrobelt[8]arenes. The acquired products had strained square-prism-shaped belt structures in which all six-membered heterocyclic rings adopted an unusual boat conformation with equatorially configured alkyl groups. The unprecedented heteroatom-bearing belts also exhibited different photophysical and redox properties to those of octahydrobelt[8]arene analogues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号