首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   2篇
  国内免费   1篇
化学   98篇
物理学   4篇
  2022年   12篇
  2021年   12篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
1.
The glycosides of volatile compounds and the essential oil were isolated from wild Mentha longifolia. After the enzymatic hydrolysis of glycosides, fourteen volatile aglycones were identified by GC/MS. The main aglycones were eugenol, 2-phenylethanol, benzyl alcohol, lavandulol, trans- and cis-carveol, 3-octanol, and 3-hexen-1-ol. The content of aglycones was 40.85 mg kg-1 of dried plant material. The main components of the essential oil (yield 0.93 w/w) were carvone, piperitenone oxide, limonene, and -caryophyllene. Eugenol, carveol, 3-octanol, and -terpineol were identified in the aglycones and in the essential oil.  相似文献   
2.
Flavours and fragrances are volatile compounds of large interest for different applications. Due to their high tendency of evaporation and, in most cases, poor chemical stability, these compounds need to be encapsulated for handling and industrial processing. Encapsulation, indeed, resulted in being effective at overcoming the main concerns related to volatile compound manipulation, and several industrial products contain flavours and fragrances in an encapsulated form for the final usage of customers. Although several organic or inorganic materials have been investigated for the production of coated micro- or nanosystems intended for the encapsulation of fragrances and flavours, polymeric coating, leading to the formation of micro- or nanocapsules with a core-shell architecture, as well as a molecular inclusion complexation with cyclodextrins, are still the most used. The present review aims to summarise the recent literature about the encapsulation of fragrances and flavours into polymeric micro- or nanocapsules or inclusion complexes with cyclodextrins, with a focus on methods for micro/nanoencapsulation and applications in the different technological fields, including the textile, cosmetic, food and paper industries.  相似文献   
3.
Plants produce volatile organic compounds that are important in communication and defense. While studies have largely focused on volatiles emitted from aboveground plant parts upon exposure to biotic or abiotic stresses, volatile emissions from roots upon aboveground stress are less studied. Here, we investigated if tomato plants under insect herbivore attack exhibited a different root volatilome than non-stressed plants, and whether this was influenced by the plant’s genetic background. To this end, we analyzed one domesticated and one wild tomato species, i.e., Solanum lycopersicum cv Moneymaker and Solanum pimpinellifolium, respectively, exposed to leaf herbivory by the insect Spodoptera exigua. Root volatiles were trapped with two sorbent materials, HiSorb and PDMS, at 24 h after exposure to insect stress. Our results revealed that differences in root volatilome were species-, stress-, and material-dependent. Upon leaf herbivory, the domesticated and wild tomato species showed different root volatile profiles. The wild species presented the largest change in root volatile compounds with an overall reduction in monoterpene emission under stress. Similarly, the domesticated species presented a slight reduction in monoterpene emission and an increased production of fatty-acid-derived volatiles under stress. Volatile profiles differed between the two sorbent materials, and both were required to obtain a more comprehensive characterization of the root volatilome. Collectively, these results provide a strong basis to further unravel the impact of herbivory stress on systemic volatile emissions.  相似文献   
4.
Pitaya is one of the most preferred and produced tropical fruit species recently introduced to the Mediterrranean region in Turkey. Due to its nutritional fruits with high economic value, the popularity of pitaya increases steadily in Turkey as an alternative crop. No detailed nutritional analysis has been undertaken in Turkey so far on fruits of the pitaya species. In this study, we determined and compared some nutritional parameters in fruit flesh of two pitaya (dragon fruit) species (Hylocereus polyrhizus: Siyam and Hylocereus undatus: Vietnam Jaina) grown in the Adana province located in the eastern Mediterranean region in Turkey. The individual sugars, antioxidant activity, total phenolic content, phenolic compounds and volatiles were determined for the first time in Turkey on two pitaya species. The results showed that total phenol content and antioxidant capacity are notably higher in red-fleshed fruits than white-fleshed ones and the predominant phenolic compound in fruits of both species was quercetin. The total sugar content and most of the phenolic compounds in fruits of two pitaya species were similar. A total of 51 volatile compounds were detected by using two Solid Phase Micro Extraction (SPME) fibers, coupled with Gas Chromatography Mass Spectrometry (GC-MS) techniques, and more volatile compounds were presented in the white-fleshed species. Total phenolic content (TPC) of the red-fleshed and white-fleshed pitaya species were 16.66 and 17.11 mg GAE/100 g FW (fresh weight). This study provides a first look at the biochemical comparison of red-fleshed and white-fleshed pitaya species introduced and cultivated in Turkey. The results also showed, for the first time, the biochemical content and the potential health benefit of Hylocereus grown in different agroecological conditions, providing important information for pitaya researchers and application perspective.  相似文献   
5.
6.
7.
Abstract

The response of suspensions of spices and spice mixtures in water to high pressure treatment was investigated. Inactivation of the microbial load–mainly aerobic and unaerobic spore formers–was strongly dependent on water activity and temperature. Samples were completely decontaminated after three pressure cycles (30 min at 80 MPa followed by 30 min at 350 MPa) at 70 °C at a minimum water activity of 0.91. Pressure treated samples were examined for sensory and chemical changes. No significant changes in odour and appearance were recognized by a trained sensory panel, nor were changes in the volatile compounds of the samples detected by static headspace gaschromatography.  相似文献   
8.
Sample preparation and introduction techniques are very critical steps in gas chromatography analysis and particularly in the analysis of volatiles in solid samples. In these cases, they can be divided into two main categories: direct and indirect approaches, based on how the solid sample is treated, i.e. with and without dissolution (or extraction) of analytes from the solid sample. To enable routine application, coupling with sample preparation techniques (especially solid or solvent‐based microextractions) is needed to achieve automation. Here, an overview of the most common sample introduction techniques for gas chromatography with their advantages and drawbacks is presented and discussed, including references to relevant examples. So, this review can serve as guidance for new users.  相似文献   
9.
Sulfur‐fumigation is known to reduce volatile compounds that are the main active components in herbs used in herbal medicine. We investigated changes in chemical composition between sun‐dried and sulfur‐fumigated Radix Angelicae Dahuricae using a purge and trap technique to capture volatile compounds, and two‐dimensional gas chromatography/time‐of‐flight mass spectrometry for identification. Using sun‐dried Radix Angelicae Dahuricae samples as a reference, the results showed that 73 volatile compounds, including 12 sulfide compounds, were found to be present only in sulfur‐fumigated samples. Furthermore, 32 volatile compounds that were found in sun‐dried Radix Angelicae Dahuricae samples disappeared after sulfur‐fumigation. The proposed method can be applied to accurately discriminate sulfur‐fumigated Radix Angelicae Dahuricae from different commercial sources. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
The present paper describes a procedure to isolate volatiles from rock-rose (Cistus ladanifer L.) using simultaneous distillation-extraction (SDE). High-value volatile compounds (HVVC) were selected and the influence of the extraction conditions investigated. The effect of the solvent nature and extraction time on SDE efficiency was studied. The best performance was achieved with pentane in 1 h operation. The extraction efficiencies ranged from 65% to 85% and the repeatability varied between 4% and 6% (as a CV%).The C. ladanifer SDE extracts were analysed by headspace solid phase microextraction (HS-SPME) followed by gas chromatography with flame ionization detection (GC-FID). The HS-SPME sampling conditions such as fiber coating, temperature, ionic strength and exposure time were optimized. The best results were achieved with an 85 μm polyacrylate fiber for a 60 min headspace extraction at 40 °C with 20% (w/v) of NaCl. For optimized conditions the recovery was in average higher than 90% for all compounds and the intermediate precision ranged from 4 to 9% (as CV %). The volatiles α-pinene (22.2 mg g−1 of extract), 2,2,6-trimethylcyclohexanone (6.1 mg g−1 of extract), borneol (3.0 mg g−1 of extract) and bornyl acetate (3.9 mg g−1 of extract) were identified in the SDE extracts obtained from the fresh plant material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号