首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   958篇
  免费   97篇
  国内免费   33篇
化学   55篇
力学   106篇
综合类   10篇
数学   152篇
物理学   765篇
  2024年   2篇
  2023年   3篇
  2022年   14篇
  2021年   13篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   20篇
  2016年   22篇
  2015年   23篇
  2014年   25篇
  2013年   27篇
  2012年   27篇
  2011年   60篇
  2010年   33篇
  2009年   57篇
  2008年   62篇
  2007年   69篇
  2006年   79篇
  2005年   53篇
  2004年   47篇
  2003年   47篇
  2002年   50篇
  2001年   44篇
  2000年   51篇
  1999年   45篇
  1998年   24篇
  1997年   13篇
  1996年   4篇
  1995年   9篇
  1994年   14篇
  1993年   9篇
  1992年   6篇
  1991年   6篇
  1990年   7篇
  1989年   13篇
  1988年   6篇
  1987年   14篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   4篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1088条查询结果,搜索用时 31 毫秒
1.
An extended technicolour grand unification model based on the gauge groupE 6×SU(7) extended technicolour is presented. The symmetry-breaking based on extended technicolour theory is discussed. It is shown that the existing phenomenology is well explained by the model. The strangeness changing neutral currents may not be a problem with this model.  相似文献   
2.
Modified three-dimensional formulations of bending problems of homogeneous elastic plates and beams are considered. Modification of the known three-dimensional formulations reduces to using additional constraints imposed on displacement functions. An advantage of the formulations proposed is that complex fixing conditions of plates and beams can be taken into account.  相似文献   
3.
We predict ultraslow collapse of “tubular image states” (TIS) on material surfaces. TIS are bound Rydberg-like electronic states formed at large distances (∼30 nm) from the surfaces of suspended circularly-symmetric nanowires, such as metallic C nanotubes. The states are formed in potential wells, resulting from a combination of the TIS-electron attraction to image charges in the nanotube and its centrifugal repulsion, caused by spinning around the tube. We demonstrate that TIS can collapse on the tube surface by passing their angular momentum l to circularly polarized flexural phonons excited in the tube. Our analysis shows that for highly detached TIS with l ? 6 the relaxation lifetimes are of the order of 10 ns-1 μs, while for l < 6 these lifetimes are reduced by several orders of magnitude.  相似文献   
4.
In the periodic orbit quantization of physical systems, usually only the leading-order ? contribution to the density of states is considered. Therefore, by construction, the eigenvalues following from semiclassical trace formulae generally agree with the exact quantum ones only to lowest order of ?. In different theoretical work the trace formulae have been extended to higher orders of ?. The problem remains, however, how to actually calculate eigenvalues from the extended trace formulae since, even with ? corrections included, the periodic orbit sums still do not converge in the physical domain. For lowest-order semiclassical trace formulae the convergence problem can be elegantly, and universally, circumvented by application of the technique of harmonic inversion. In this paper we show how, for general scaling chaotic systems, also higher-order ? corrections to the Gutzwiller formula can be included in the harmonic inversion scheme, and demonstrate that corrected semiclassical eigenvalues can be calculated despite the convergence problem. The method is applied to the open three-disk scattering system, as a prototype of a chaotic system. Received 10 September 2001 and Received in final form 3 January 2002  相似文献   
5.
The values of the Higgs mass are obtained for two possibilities of extending the standard model in a way compatible with the existence of a noncommutative structure at high energies. We assume the existence of a big desert between the low energy electroweak scale and the high energy scale Λ=1.1×1017 GeV, where noncommutative features become relevant. We conclude that it is extremely difficult to depart from the Higgs mass value obtained from noncommutative geometry for the standard model with three generations only.  相似文献   
6.
U Camci  Z Can  Y Nutku  Y Sucu  D Yazici 《Pramana》2006,67(6):1043-1053
We present the explicit form of the symplectic structure of anti-self-dual Yang-Mills (ASDYM) equations in Yang’s J- and K-gauges in order to establish the bi-Hamiltonian structure of this completely integrable system. Dirac’s theory of constraints is applied to the degenerate Lagrangians that yield the ASDYM equations. The constraints are second class as in the case of all completely integrable systems which stands in sharp contrast to the situation in full Yang-Mills theory. We construct the Dirac brackets and the symplectic 2-forms for both J- and K-gauges. The covariant symplectic structure of ASDYM equations is obtained using the Witten-Zuckerman formalism. We show that the appropriate component of the Witten-Zuckerman closed and conserved 2-form vector density reduces to the symplectic 2-form obtained from Dirac’s theory. Finally, we present the Bäcklund transformation between the J- and K-gauges in order to apply Magri’s theorem to the respective two Hamiltonian structures.  相似文献   
7.
8.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   
9.
We study a boundary version of the gauged WZW model with a Poisson–Lie group G as the target. The Poisson–Lie structure of G is used to define the Wess–Zumino term of the action on surfaces with boundary. We clarify the relation of the model to the topological Poisson sigma model with the dual Poisson–Lie group G * as the target and show that the phase space of the theory on a strip is essentially the Heisenberg double of G introduced by Semenov–Tian–Shansky.  相似文献   
10.
We investigate the viability of f(R) theories in the framework of the Palatini approach as solutions to the problem of the observed accelerated expansion of the universe. Two physically motivated popular choices for f(R) are considered,: power law, f(R) = β R n , and logarithmic, f(R) = α ln R. Under the Palatini approach, both Lagrangians give rise to cosmological models comprising only standard matter and undergoing a present phase of accelerated expansion. We use the Hubble diagram of type Ia Supernovae and the data on the gas mass fraction in relaxed galaxy clusters to see whether these models are able to reproduce what is observed and to constrain their parameters. It turns out that they are indeed able to fit the data with values of the Hubble constant and of the matter density parameter in agreement with some model independent estimates, but the today deceleration parameter is higher than what is measured in the concordance ΛCDM model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号