首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   23篇
  国内免费   3篇
化学   11篇
力学   18篇
数学   60篇
物理学   33篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   1篇
  2017年   6篇
  2016年   9篇
  2015年   3篇
  2014年   13篇
  2013年   6篇
  2012年   7篇
  2011年   2篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2002年   1篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
1.
M. D. Srinivas 《Pramana》2003,60(6):1137-1152
We derive an optimal bound on the sum of entropic uncertainties of two or more observables when they are sequentially measured on the same ensemble of systems. This optimal bound is shown to be greater than or equal to the bounds derived in the literature on the sum of entropie uncertainties of two observables which are measured on distinct but identically prepared ensembles of systems. In the case of a two-dimensional Hilbert space, the optimum bound for successive measurements of two-spin components, is seen to be strictly greater than the optimal bound for the case when they are measured on distinct ensembles, except when the spin components are mutually parallel or perpendicular  相似文献   
2.
Using a class of linear static controllers, we stabilize the Petersen open-loop two-dimensional linear system (Ref. 1), which consists of one time-varying uncertainty in the state matrixA and one timevarying uncertainty in the input matrixB. We show that the worst-case uncertainty strategy for the closed-loop system is a piecewise constant strategy of the angular state with three switches on the half-turn, –/2/2; it is unique with respect to a set of measure zero. Formulas are derived for the worst-case half-turn radius gainr HT as a function of the parameters of the class of stabilizing linear static controllers. Using the class of scalar-quadratic Lyapunov functions, we show that a necessary and sufficient condition for the closed-loop system to be robustly stable against all time-varying admissible uncertainties is thatr HT be less than unity. The bound on the time-varying real parameter uncertainties for the closed-loop system to be robustly stable is derived for the class of linear static feedback controllers. We obtain stabilizing linear static controllers such that the bound is as close to infinity as desired. The derived results are compared with numerical results obtained using commerical robust-control software.  相似文献   
3.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
4.
This article contributes to the development of methods for shape optimization under uncertainties, associated with the flow conditions, based on intrusive Polynomial Chaos Expansion (iPCE) and continuous adjoint. The iPCE to the Navier–Stokes equations for laminar flows of incompressible fluids is developed to compute statistical moments of the Quantity of Interest which are, then, compared with those obtained through the Monte Carlo method. The optimization is carried out using a continuous adjoint-enabled, gradient-based loop. Two different formulations for the continuous adjoint to the iPCE PDEs are derived, programmed, and verified. Intrusive PCE methods for the computation of the statistical moments require mathematical development, derivation of a new system of governing equations and their numerical solution. The development is presented for a chaos order of two and two uncertain variables and can be used as a guide to those willing to extend this development to a different set of uncertain variables or chaos order. The developed method and software, programmed in OpenFOAM, is applied to two optimization problems pertaining to the flow around isolated airfoils with uncertain farfield conditions.  相似文献   
5.
This paper presents sophisticated interval algorithms for the simulation of discrete-time dynamical systems with bounded uncertainties of both initial conditions and system parameters. Since naive implementations of interval algorithms might lead to guaranteed enclosures of all system states which are too conservative to be practically useful, we present algorithmic extensions of classical approaches which are applicable to the simulation of non-cooperative systems with time-varying uncertain parameters. Overestimation arising in the interval evaluation of dynamical system models due to the wrapping effect is reduced by an exact pseudo-linear transformation of nonlinear state equations and by new heuristics for the subdivision of interval enclosures which especially prefer splitting of unstable intervals. To highlight the typical procedure for parameterization of interval-based simulation routines and to demonstrate their efficiency, a nonlinear model of biological wastewater treatment processes is discussed. For this application, we consider the maximum specific growth rate of substrate consuming bacteria as a time-varying uncertain parameter. Only worst-case bounds are assumed to be available for the range of this parameter while no information is provided about its actual variation rate.  相似文献   
6.
This article addresses the issue of robust sampled‐data control for a class of uncertain mechanical systems with input delays and linear fractional uncertainties which appear in all the mass, damping, and stiffness matrices. Then, a novel Lyapunov–Krasovskii functional is constructed to obtain sufficient conditions under which the uncertain mechanical system is robustly, asymptotically stable with disturbance attenuation level about its equilibrium point for all admissible uncertainties. More precisely, Schur complement and Jenson's integral inequality are utilized to substantially simplify the derivation of the main results. In particular, a set of sampled‐data controller is designed in terms of the solution of certain linear matrix inequalities that can be solved effectively using available MATLAB software. Finally, a numerical example with simulation result is provided to show the effectiveness and less conservativeness of the proposed sampled‐data control scheme. © 2014 Wiley Periodicals, Inc. Complexity 20: 19–29, 2015  相似文献   
7.
This paper considers the problem of robust output-tracking controlfor multi-input multi-output (MIMO) nonlinear systems in thepresence of mismatched time-dependent uncertainties. It firstgeneralizes the stable combined-variable perturbation method(SCVPM) which was proposed by Li et al. (1996) to derive a newrobust controller and its adaptive version for MIMO systemsto track a desired trajectory. It is shown that both controllersnot only stabilize the closed-loop systems but also guaranteethat the tracking errors remain in an O() neighbourhood of theorgin, where is a small design parameter of the controller.Moreover, the adaptive robust controller is only based on thenominal system, and no a priori data on the uncertainties areneeded. Therefore, it is more feasibly implemented than thenon-adaptive controller.  相似文献   
8.
不确定非线性动力系统的稳定性分析   总被引:2,自引:0,他引:2  
本文讨论渐近稳定的非线性名义动力系统在非线性时变扰动下的鲁棒稳定性问题。应用Lyapunov稳定性定理及其推广定理得出了非线性动力系统鲁棒稳定的若干判别准则,并给邮了应用所得准则的实际算例。  相似文献   
9.
10.
The problem of robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties is investigated in this article. It is only assumed that the upper normal bound of uncertain inner and outer coupling matrices is positive but its concrete structure is not also required to be known. The time‐varying coupling delay is a any nonnegative continuous and bounded function and not require its derivative to be less than one, that is, general time‐varying coupling delays and uncertainties. For such a class of uncertain complex networks, a new synchronization scheme is presented by a class of continuous memoryless robust decentralized adaptive synchronization controllers. It is also shown that the synchronization error dynamics of uncertain complex networks can be guaranteed as uniformly exponentially convergent toward a ball that can be as small as desired. Finally, numerical simulations are provided to demonstrate the effectiveness and robustness of proposed complex networks synchronization schemes. © 2013 Wiley Periodicals, Inc. Complexity 19: 10–26, 2014  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号