首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14870篇
  免费   2497篇
  国内免费   1771篇
化学   11856篇
晶体学   96篇
力学   101篇
综合类   101篇
数学   69篇
物理学   6915篇
  2024年   49篇
  2023年   143篇
  2022年   567篇
  2021年   674篇
  2020年   696篇
  2019年   716篇
  2018年   540篇
  2017年   654篇
  2016年   868篇
  2015年   789篇
  2014年   1080篇
  2013年   1388篇
  2012年   1138篇
  2011年   968篇
  2010年   882篇
  2009年   971篇
  2008年   946篇
  2007年   978篇
  2006年   802篇
  2005年   678篇
  2004年   567篇
  2003年   485篇
  2002年   392篇
  2001年   240篇
  2000年   284篇
  1999年   227篇
  1998年   223篇
  1997年   201篇
  1996年   167篇
  1995年   166篇
  1994年   116篇
  1993年   114篇
  1992年   94篇
  1991年   77篇
  1990年   56篇
  1989年   42篇
  1988年   36篇
  1987年   40篇
  1986年   11篇
  1985年   18篇
  1984年   17篇
  1983年   4篇
  1982年   15篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Low-flow chromatography has a rich history of innovation but has yet to reach widespread implementation in bioanalytical applications. Improvements in pump technology, microfluidic connections, and nano-electrospray sources for MS have laid the groundwork for broader application, and innovation in this space has accelerated in recent years. This article reviews the instrumentation used for nano-flow LC, the types of columns employed, and strategies for multidimensionality of separations, which are key to the future state of the technique to the high-throughput needs of modern bioanalysis. An update of the current applications where nano-LC is widely used, such as proteomics and metabolomics, is discussed. But the trend toward biopharmaceutical development of increasingly complex, targeted, and potent therapeutics for the safe treatment of disease drives the need for ultimate selectivity and sensitivity of our analytical platforms for targeted quantitation in a regulated space. The selectivity needs are best addressed by mass spectrometric detection, especially at high resolutions, and exquisite sensitivity is provided by nano-electrospray ionization as the technology continues to evolve into an accessible, robust, and easy-to-use platform.  相似文献   
2.
CRANAD-2 is a fluorogenic curcumin derivative used for near-infrared detection and imaging in vivo of amyloid aggregates, which are involved in neurodegenerative diseases. We explore the performance of CRANAD-2 in two super-resolution imaging techniques, namely stimulated emission depletion (STED) and single-molecule localization microscopy (SMLM), with markedly different fluorophore requirements. By conveniently adapting the concentration of CRANAD-2, which transiently binds to amyloid fibrils, we show that it performs well in both techniques, achieving a resolution in the range of 45–55 nm. Correlation of SMLM with atomic force microscopy (AFM) validates the resolution of fine features in the reconstructed super-resolved image. The good performance and versatility of CRANAD-2 provides a powerful tool for near-infrared nanoscopic imaging of amyloids in vitro and in vivo.  相似文献   
3.
Far-red emitting fluorescent labels are highly desirable for spectral multiplexing and deep tissue imaging. Here, we describe the generation of frFAST (far-red Fluorescence Activating and absorption Shifting Tag), a 14-kDa monomeric protein that forms a bright far-red fluorescent assembly with (4-hydroxy-3-methoxy-phenyl)allylidene rhodanine (HPAR-3OM). As HPAR-3OM is essentially non-fluorescent in solution and in cells, frFAST can be imaged with high contrast in presence of free HPAR-3OM, which allowed the rapid and efficient imaging of frFAST fusions in live cells, zebrafish embryo/larvae, and chicken embryos. Beyond enabling the genetic encoding of far-red fluorescence, frFAST allowed the design of a far-red chemogenetic reporter of protein–protein interactions, demonstrating its great potential for the design of innovative far-red emitting biosensors.  相似文献   
4.
In this communication, we report the synthesis of small‐sized (<10 nm), water‐soluble, magnetic nanoparticles (MNPs) coated with polyhedral oligomeric silsesquioxanes (POSS), which contain either polyethylene glycol (PEG) or octa(tetramethylammonium) (OctaTMA) as functional groups. The POSS‐coated MNPs exhibit superparamagnetic behavior with saturation magnetic moments (51–53 emu g?1) comparable to silica‐coated MNPs. They also provide good colloidal stability at different pH and salt concentrations, and low cytotoxicity to MCF‐7 human breast epithelial cells. The relaxivity data and magnetic resonance (MR) phantom images demonstrate the potential application of these MNPs in bioimaging.  相似文献   
5.
miRNA (miR)-155 is a potential biomarker for breast cancers. We aimed at developing a nanosensor for miR-155 detection by integrating hybridization chain reaction (HCR) and silver nanoclusters (AgNCs). HCR serves as an enzyme-free and isothermal amplification method, whereas AgNCs provide a built-in fluorogenic detection probe that could simplify the downstream analysis. The two components were integrated by adding a nucleation sequence of AgNCs to the hairpin of HCR. The working principle was based on the influence of microenvironment towards the hosted AgNCs, whereby unfolding of hairpin upon HCR has manipulated the distance between the hosted AgNCs and cytosine-rich toehold region of hairpin. As such, the dominant emission of AgNCs changed from red to yellow in the absence and presence of miR-155, enabling a ratiometric measurement of miR with high sensitivity. The limit of detection (LOD) of our HCR-AgNCs nanosensor is 1.13 fM in buffered solution. We have also tested the assay in diluted serum samples, with comparable LOD of 1.58 fM obtained. This shows the great promise of our HCR-AgNCs nanosensor for clinical application.  相似文献   
6.
陈雅琼  宋洪东  吴懋  陆扬  管骁 《化学进展》2022,34(10):2267-2282
蛋白质-多糖复合体系作为生物活性物质传递系统的壁材,有着人工合成聚合物或无机物等其他材料不可比拟的多重优势。本文就蛋白质和多糖之间的连接方式及蛋白质-多糖复合体系形成传递系统的多种形式进行了综述,以及对此领域的发展趋势进行了展望。结合蛋白质和多糖的结构特点,二者之间的链接方式分为非共价结合的物理共聚,和共价结合的美拉德偶联、化学交联、酶催化交联等方式,文中分别对各种连接方式的原理和机理,以及其影响因素做了深入阐述。以蛋白质-多糖复合体系为壁材对活性物质的传递形式大体上分成乳化系统、胶束、纳米凝胶、分子复合物以及壳核结构等系统。不同的活性物质的特征和传递需求,可针对性地选择合适结构的蛋白质和多糖种类以及二者的连接方式和传递系统的形式。并且,随着研究的逐步发展和推进,此领域的发展趋势朝着智能化和靶向性的方向进行。目前活性物质的蛋白质-多糖复合体系的传递系统,还依然面临着系统设计、评价和应用等多方面的挑战,这就要求我们在更全面更深入了解认识其对活性物质影响和功效的基础上,安全合理地设计和深入细致地评价活性成分的传递系统。  相似文献   
7.
Slow-channel congenital myasthenic syndromes (SCCMSs) are rare genetic diseases caused by mutations in muscle nicotinic acetylcholine receptor (nAChR) subunits. Most of the known SCCMS-associated mutations localize at the transmembrane region near the ion pore. Only two SCCMS point mutations are at the extracellular domains near the acetylcholine binding site, α1(G153S) being one of them. In this work, a combination of molecular dynamics, targeted mutagenesis, fluorescent Ca2+ imaging and patch-clamp electrophysiology has been applied to G153S mutant muscle nAChR to investigate the role of hydrogen bonds formed by Ser 153 with C-loop residues near the acetylcholine-binding site. Introduction of L199T mutation to the C-loop in the vicinity of Ser 153 changed hydrogen bonds distribution, decreased acetylcholine potency (EC50 2607 vs. 146 nM) of the double mutant and decay kinetics of acetylcholine-evoked cytoplasmic Ca2+ rise (τ 14.2 ± 0.3 vs. 34.0 ± 0.4 s). These results shed light on molecular mechanisms of nAChR activation-desensitization and on the involvement of such mechanisms in channelopathy genesis.  相似文献   
8.
A new asymmetric Salamo‐based ligand H2L was synthesized using 3‐tertbutyl‐salicylaldehyde and 6‐methoxy‐2‐[O‐(1‐ethyloxyamide)]‐oxime‐1‐phenol. By adjusting the ratio of the ligand H2L and Cu (II), Co (II), and Ni (II) ions, mononuclear, dinuclear, and trinuclear transition metal (II) complexes, [Cu(L)], [{Co(L)}2], and [{Ni(L)(CH3COO)(CH3CH2OH)}2Ni] with the ligand H2L possessing completely different coordination modes were obtained, respectively. The optical spectra of ligand H2L and its Cu (II), Co (II) and Ni (II) complexes were investigated. The Cu (II) complex is a mononuclear structure, and the Cu (II) atom is tetracoordinated to form a planar quadrilateral structure. The Co (II) complex is dinuclear, and the two Co (II) atoms are pentacoordinated and have coordination geometries of distorted triangular bipyramid. The Ni (II) complex is a trinuclear structure, and the terminal and central Ni (II) atoms are all hexacoordinated, forming distorted octahedral geometries. Furthermore, optical properties including UV–Vis, IR, and fluorescence of the Cu (II), Co (II), and Ni (II) complexes were investigated. Finally, the antibacterial activities of the Cu (II), Co (II), and Ni (II) complexes were explored. According to the experimental results, the inhibitory effect was found to be enhanced with increasing concentrations of the Cu (II), Co (II), and Ni (II) complexes.  相似文献   
9.
The highly substituted mono-aryl/alkylthio-(hetero)acenes prepared in this study have been found to be thermally more stable (Tdecomp.=331–354 °C) than the known di-aryl/alkylthio-substituted acenes by an average of 25 °C. They are also much more photostable at 254 and 365 nm (in both argon and air) than the parent anthracene and other reported anthracenes. The most photostable aryl/alkylthio-anthracenes at 254 nm were found to be 60–70 (in air) and 130 (in argon) times more stable in solution than the unsubstituted anthracene, and much more stable than known EDG/EWG-substituted anthracenes (EDG=electron-donating group, EWG=electron-withdrawing group) with an extended aromatic core. Furthermore, the acenes showed significantly higher photostability at 365 nm in both air and argon. The anthracenes were obtained by the novel thio-Friedel–Crafts/Bradsher cyclization reaction of hitherto unknown [o-(1,3-dithian-2-yl)aryl](aryl)methyl thioethers. The developed approach provides a general access to mono-aryl/alkylthio-substituted (hetero)acene frameworks containing at least three fused (hetero)aromatic rings. The characteristic feature of this approach, which leads to highly substituted acenes, is that the substituents, unlike in other methods, may be introduced at an early stage of the synthesis. DFT and TD-DFT calculations confirmed the stabilizing role of the aryl/alkylthio substituent in the mono-aryl/alkylthio-substituted anthracenes, which are the most stable anthracenes prepared to date. Their high photostability is mainly due to the quenching of singlet oxygen by the acene and the quenching of the acene S1 state by molecular oxygen.  相似文献   
10.
Pyrrolopyrrole aza‐BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride‐mediated Schiff‐base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near‐infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO–LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl‐substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross‐coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time‐resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号