首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   28篇
化学   49篇
晶体学   2篇
力学   71篇
综合类   2篇
数学   21篇
物理学   94篇
  2024年   1篇
  2023年   4篇
  2022年   9篇
  2021年   1篇
  2020年   8篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   11篇
  2012年   18篇
  2011年   10篇
  2010年   4篇
  2009年   10篇
  2008年   13篇
  2007年   6篇
  2006年   13篇
  2005年   4篇
  2004年   11篇
  2003年   8篇
  2002年   12篇
  2001年   13篇
  2000年   8篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
1.
Using enhancement of the 27Al central-transition magnetization by applying RAPT prior to 27Al → 29Si cross-polarization, we demonstrate fast acquisition of 29Si one-dimensional MAS and two-dimensional 27Al–29Si HETCOR spectra on a new sialon phase Ba2Al3Si9N13O5.  相似文献   
2.
《Chemphyschem》2006,7(1):117-130
Ultra‐wideline 27Al NMR experiments are conducted on coordination compounds with 27Al nuclei possessing immense quadrupolar interactions that result from exceptionally nonspherical coordination environments. NMR spectra are acquired using a methodology involving frequency‐stepped, piecewise acquisition of NMR spectra with Hahn‐echo or quadrupolar Carr–Purcell Meiboom–Gill (QCPMG) pulse sequences, which is applicable to any half‐integer quadrupolar nucleus with extremely broad NMR powder patterns. Despite the large breadth of these central transition powder patterns, ranging from 250 to 700 kHz, the total experimental times are an order of magnitude less than previously reported experiments on analogous complexes with smaller quadrupolar interactions. The complexes examined feature three‐ or five‐coordinate aluminum sites: trismesitylaluminum (AlMes3), tris(bis(trimethylsilyl)amino)aluminum (Al(NTMS2)3), bis[dimethyl tetrahydrofurfuryloxide aluminum] ([Me2‐Al(μ‐OTHF)]2), and bis[diethyl tetrahydrofurfuryloxide aluminum] ([Et2‐Al(μ‐OTHF)]2). We report some of the largest 27Al quadrupolar coupling constants measured to date, with values of CQ(27Al) of 48.2(1), 36.3(1), 19.9(1), and 19.6(2) MHz for AlMes3 , Al(NTMS2)3 , [Me2‐Al(μ‐OTHF)]2 , and [Et2‐Al(μ‐OTHF)]2 , respectively. X‐ray crystallographic data and theoretical (Hartree–Fock and DFT) calculations of 27Al electric field gradient (EFG) tensors are utilized to examine the relationships between the quadrupolar interactions and molecular structure; in particular, the origin of the immense quadrupolar interaction in the three‐coordinate species is studied via analyses of molecular orbitals.  相似文献   
3.
A specific (hybrid) arrangement of variables is discussed to solve reactive compressible Navier–Stokes equations on staggered‐like grids with high‐order finite difference schemes. The objective is to improve the numerical flow solution at boundaries. Hybrid arrangement behaviour is compared with ‘pure’ colocated and staggered strategies. Classical Fourier analysis shows accuracy to be significantly improved in the hybrid case. One‐dimensional laminar flame test demonstrates increased robustness (in terms of mesh resolution), whereas computation of 1D exiting pressure wave propagation gives evidence that the method also improves accuracy in the prediction of non‐reflecting outflows, compared e.g. with the fully staggered scheme of (J. Comput. Phy. 2003). Multidimensional extension is illustrated through turbulent 2D planar and 3D expanding flames simulations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
In this article, the lattice Boltzmann method is employed in order to explore incompressible fluid flow inside a two-sided lid-driven staggered cavity. Results of the lattice Boltzmann simulation for antiparallel motion of lids are compared with the data from existing literature. For parallel motion of lids, the characteristics of flow pattern for a variety of Re numbers (50–3200) are presented. An asymmetric steady-state flow pattern for parallel motion of lids is obtained.  相似文献   
5.
We present a simple and cost‐effective curvature calculation approach for simulations of interfacial flows on structured and unstructured grids. The interface is defined using volume fractions, and the interface curvature is obtained as a function of the gradients of volume fractions. The gradient computation is based on a recently proposed gradient recovery method that mimicks the least squares approach without the need to solve a system of equations and is quite easy to implement on arbitrary polygonal meshes. The resulting interface curvature is used in a continuum surface force formulation within the framework of a well‐balanced finite‐volume algorithm to simulate multiphase flows dominated by surface tension. We show that the proposed curvature calculation is at least as accurate as some of the existing approaches on unstructured meshes while being straightforward to implement on any mesh topology. Numerical investigations also show that spurious currents in stationary problems that are dependent on the curvature calculation methodology are also acceptably low using the proposed approach. Studies on capillary waves and rising bubbles in viscous flows lend credence to the ability of the proposed method as an inexpensive, robust, and reasonably accurate approach for curvature calculation and numerical simulation of multiphase flows.  相似文献   
6.
A two-dimensional (2D) numerical model is developed for the wave simulation and propagation in a wave flume.The fluid flow is assumed to be viscous and incompressible,and the Navier-Stokes and continui...  相似文献   
7.
We describe several homo- and heteronuclear 2D NMR strategies dedicated to the analysis of anisotropic (2)H spectra of a mixture of dideuterated unlike/like stereoisomers with two remote stereogenic centers, using weakly orienting chiral liquid crystals. To this end, we propose various 2D correlation experiments, denoted "D(H)(n)D" or "D(H)(n)C" (with n=1, 2), that involve two heteronuclear polarization transfers of INEPT-type with one or two proton relays. The analytical expressions of correlation signals for four pulse sequences reported here were calculated using the product-operators formalism for spin I=1 and S=1/2. The features and advantages of each scheme are presented and discussed. The efficiency of these 2D sequences is illustrated using various deuterated model molecules, dissolved in organic solutions of polypeptides made of poly-gamma-benzyl-L-glutamate (PBLG) or poly-epsilon-carbobenzyloxy-L-lysine (PCBLL) and NMR numerical simulations.  相似文献   
8.
Molecular-based Fluorescent Organic Nanoparticles (FONs) are versatile light-emitting nano-tools whose properties can be rationally addressed by bottom-up molecular engineering. A challenging property to gain control over is the interaction of the FONs’ surface with biological systems. Indeed, most types of nanoparticles tend to interact with biological membranes. To address this limitation, we recently reported on two-photon (2P) absorbing, red to near infrared (NIR) emitting quadrupolar extended dyes built from a benzothiadiazole core and diphenylamino endgroups that yield spontaneously stealth FONs. In this paper, we expand our understanding of the structure-property relationship between the dye structure and the FONs 2P absorption response, fluorescence and stealthiness by characterizing a dye-related series of FONs. We observe that increasing the strength of the donor end-groups or of the core acceptor in the quadrupolar (D-π-A-π-D) dye structure allows for the tuning of optical properties, notably red-shifting both the emission (from red to NIR) and 2P absorption spectra while inducing a decrease in their fluorescence quantum yield. Thanks to their strong 1P and 2P absorption, all FONs whose median size varies between 11 and 28 nm exhibit giant 1P (106 M−1.cm−1) and 2P (104 GM) brightness values. Interestingly, all FONs were found to be non-toxic, exhibit stealth behaviour, and show vanishing non-specific interactions with cell membranes. We postulate that the strong hydrophobic character and the rigidity of the FONs building blocks are crucial to controlling the stealth nano-bio interface.  相似文献   
9.
孙晨  李肖  沈智军 《计算物理》2020,37(5):529-538
为消除传统单元中心型Godunov方法在求解稀疏波问题时的非物理过热现象,发展一种适用于等熵流动的交错拉氏Godunov方法.主要的特征是采用速度与热力学变量交错分布的形式,避免在单元内进行速度平均,从而消除由于动量平均过程导致的动能耗散.与传统的von Neumann型交错网格方法相比,网格的边界通量由节点处的多维黎曼求解器提供,克服了多维人工粘性选取带来的困难.为减少多维黎曼求解器在求解稀疏波问题时的非物理熵增,给出稀疏波出现的合理判据,从而保证了热力学关系式的满足.数值实验表明:该方法能很好地消除稀疏波的过热现象,同时在求解激波问题时又能保持与传统单元中心型拉氏方法相同的激波捕捉能力.  相似文献   
10.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号