首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6263篇
  免费   785篇
  国内免费   583篇
化学   1918篇
晶体学   61篇
力学   1489篇
综合类   126篇
数学   1818篇
物理学   2219篇
  2024年   12篇
  2023年   63篇
  2022年   150篇
  2021年   204篇
  2020年   218篇
  2019年   178篇
  2018年   173篇
  2017年   217篇
  2016年   279篇
  2015年   207篇
  2014年   359篇
  2013年   492篇
  2012年   374篇
  2011年   432篇
  2010年   322篇
  2009年   404篇
  2008年   354篇
  2007年   367篇
  2006年   328篇
  2005年   308篇
  2004年   255篇
  2003年   256篇
  2002年   205篇
  2001年   164篇
  2000年   170篇
  1999年   163篇
  1998年   140篇
  1997年   144篇
  1996年   101篇
  1995年   92篇
  1994年   84篇
  1993年   67篇
  1992年   71篇
  1991年   42篇
  1990年   43篇
  1989年   24篇
  1988年   31篇
  1987年   17篇
  1986年   19篇
  1985年   18篇
  1984年   16篇
  1983年   8篇
  1982年   14篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1973年   3篇
  1971年   4篇
  1957年   6篇
排序方式: 共有7631条查询结果,搜索用时 218 毫秒
1.
2.
From the implementation point of view, the printable magnetic Janus colloidal photonic crystals (CPCs) microspheres are highly desirable. Herein, we developed a dispensing-printing strategy for magnetic Janus CPCs display via a microfluidics-automatic printing system. Monodisperse core/shell colloidal particles and magnetic Fe3O4 nanoparticles precursor serve as inks. Based on the equilibrium of three-phase interfacial tensions, Janus structure is successfully formed, followed by UV irradiation and self-assembly of colloid particle to generate magnetic Janus CPCs microspheres. Notably, this method shows distinct superiority with highly uniform Janus CPCs structure, where the TMPTA/Fe3O4 hemisphere is in the bottom side while CPCs hemisphere is in the top side. Thus, by using Janus CPCs microspheres with two different structural colors as pixel points, a pattern with red flower and green leaf is achieved. Moreover, 1D linear Janus CPCs pattern encapsulated by hydrogel is also fabricated. Both the color and the shape can be changed under the traction of magnets, showing great potentials in flexible smart displays. We believe this work not only offers a new feasible pathway to construct magnetic Janus CPCs patterns by a dispensing-printable fashion, but also provides new opportunities for flexible and smart displays.  相似文献   
3.
4.
Raman chemical imaging provides chemical and spatial information about pharmaceutical drug product. By using resolution methods on acquired spectra, the objective is to calculate pure spectra and distribution maps of image compounds. With multivariate curve resolution-alternating least squares, constraints are used to improve the performance of the resolution and to decrease the ambiguity linked to the final solution. Non negativity and spatial local rank constraints have been identified as the most powerful constraints to be used.  相似文献   
5.
High-energy assisted extraction techniques, like ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE), are widely applied over the last years for the recovery of bioactive compounds such as carotenoids, antioxidants and phenols from foods, animals and herbal natural sources. Especially for the case of xanthophylls, the main carotenoid group of crustaceans, they can be extracted in a rapid and quantitative way with the use of UAE and MAE.  相似文献   
6.
Multivariate curve resolution methods, frequently used in analyzing bilinear data sets, result in ambiguous decomposition in general. Implementing the adequate constraints may lead to reduce the so-called rotational ambiguity drastically, and in the most favorable cases to the unique solution. However, in some special cases, non-negativity constraint as minimal information of the system is a sufficient condition to resolve profiles uniquely. Although, several studies on exploring the uniqueness of the bilinear non-negatively constrained multivariate curve resolution methods have been made in the literature, it has still remained a mysterious question. In 1995, Manne published his profile-based theorems giving the necessary and sufficient conditions of the unique resolution. In this study, a new term, i.e., data-based uniqueness is defined and investigated in details, and a general procedure is suggested for detection of uniquely recovered profile(s) on the basis of data set structure in the abstract space. Close inspection of Borgen plots of these data sets leads to realize the comprehensive information of local rank, and these argumentations furnish a basis for data-based uniqueness theorem. The reported phenomenon and its exploration is a new stage (it can be said fundament) in understanding and describing the bilinear (matrix-type) chemical data in general.  相似文献   
7.
Exposure of cimetidine (CIM) to dry heat (160–180 °C) afforded, upon cooling, a glassy solid containing new and hitherto unknown products. The kinetics of this process was studied by a second order chemometrics-assisted multi-spectroscopic approach. Proton and carbon-13 nuclear magnetic resonance (NMR), as well as ultraviolet and infrared spectroscopic data were jointly used, whereas multivariate curve resolution with alternating least squares (MCR-ALS) was employed as the chemometrics method to extract process information. It was established that drug degradation follows a first order kinetics.  相似文献   
8.
《中国化学快报》2020,31(12):3183-3189
Engineered nanomaterials have attracted significantly attention as one of the most promising antimicrobial agents for against multidrug resistant infections. The toxicological responses of nanomaterials are closely related to their physicochemical properties, and establishment of a structure-activity relationship for nanomaterials at the nano-bio interface is of great significance for deep understanding antibacterial toxicity mechanisms of nanomaterials and designing safer antibacterial nanomaterials. In this study, the antibacterial behaviors of well-defined crystallographic facets of a series of Au nanocrystals, including {100}-facet cubes, {110}-facet rhombic dodecahedra, {111}-facet octahedra, {221}-facet trisoctahedra and {720}-facet concave cubes, was investigated, using the model bacteria Staphylococcus aureus. We find that Au nanocrystals display substantial facet-dependent antibacterial activities. The low-index facets of cubes, octahedra, and rhombic dodecahedra show considerable antibacterial activity, whereas the high-index facets of trisoctahedra and concave cubes remained inert under biological conditions. This result is in stark contrast to the previous paradigm that the high-index facets were considered to have higher bioactivity as compared with low-index facets. The antibacterial mechanism studies have shown that the facet-dependent antibacterial behaviors of Au nanocrystals are mainly caused by differential bacterial membrane damage as well as inhibition of cellular enzymatic activity and energy metabolism. The faceted Au nanocrystals are unique in that they do not induce generation of reactive oxygen species, as validated for most antibiotics and antimicrobial nanostructures. Our findings may provide a deeper understanding of facet-dependent toxicological responses and suggest the complexities of the nanomaterial-cell interactions, shedding some light on the development of high performance Au nanomaterials-based antibacterial therapeutics.  相似文献   
9.
For a discrete linear stochastic dynamical system, computation of the response matrix to the external action from a subspace using given observational data is examined. An algorithm is proposed and substantiated that makes it possible to improve the numerical accuracy and to reduce the amount of observational data compared to the general case where an arbitrary external action is allowed. As an illustration, a discrete system arising in the analysis of a linear stochastic dynamical continuous-time system is considered more thoroughly. Some numerical results are presented.  相似文献   
10.
 三折螺旋波纹波导使TE11模和TE21模相互耦合,其色散曲线能够在宽频带内与电子回旋共振,因此需要对色散方程进行研究。提出了适合工程实用的行波模式和返波模式的色散方程,并对方程中的耦合系数进行了简化,误差在1%左右。利用CST软件的VBA语言对螺旋波纹波导进行建模和计算,根据模拟得到的传输特性曲线的特点,提出一种模拟方法,将模拟与理论计算得到的色散曲线作对比,误差在5%左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号