首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   13篇
综合类   1篇
数学   1篇
物理学   48篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
A spatially closed universe undergoing at present accelerated expansion, having a non-vanishing cosmological constant, and filled with luminous- and dark matter is described in terms of the Integrable Weyl–Dirac theory. It is shown that, during the dust-dominated period, dark matter and the quintessence pressure, the latter giving rise to acceleration: both are created by the Dirac gauge function. The behavior of two models: a nearly flat one and a well closed are considered in appropriate gauges, and plausible scenarios are obtained. The outcome of the present paper, together with results of a previous work,(31) provide a geometrically based, classical, singularity-free model of the universe, that has originated from a pure geometric Weyl–Dirac entity, passed a prematter period, the radiation-dominated era, and continues its development in the present dust period.  相似文献   
2.
3.
Quintessence field is a widely-studied candidate of dark energy. There is "tracker solution" in quintessence models, in which evolution of the field φ at present times is not sensitive to its initial conditions. When the energy density of dark energy is negleetable (Ωφ 〈〈 1), evolution of the tracker solution can be well analysed from "tracker equation". In this paper, we try to study evolution of the quintessence field from "full tracker equation", which is valid for all spans of Ωφ. We get stable fixed points of we and wφ (noted as wφ and Ωφ) from the "full tracker equation", i.e., we and ωφ will always approach ωφ and Ωφ respectively. Since wφ and Ωφ are analytic functions of φ, analytic relation of φ can be obtained, which is a good approximation for the we φ relation and can be obtained for the most type of quintessence potentials. By using this approximation, we find that inequalities ωφ 〈 we and 〈ωφ are statisfied if the we (or ωφ) decreases with time. In this way, the potentiai U(φ) can be constrained directly from observations, by no need of solving the equations of motion numerically.  相似文献   
4.
The tension between the Hubble constant values obtained from local measurements and cosmic microwave background (CMB) measurements has motivated us to consider the cosmological model beyond ΛCDM. We investigate the cosmology in the large scale Lorentz violation model with a non-vanishing spatial curvature. The degeneracy among spatial curvature, cosmological constant, and cosmological contortion distribution makes the model viable in describing the known observational data. We obtain some constraints on the spatial curvature by comparing the relationship between measured distance modulus and red-shift with the predicted one, the evolution of matter density over time, and the evolution of effective cosmological constant. The implications of the large scale Lorentz violation model with the non-vanishing spatial curvature under these constrains are discussed.  相似文献   
5.
By extending the Parikh-Wilczek tunneling framework, we investigate the tunneling radiation of uncharged massless particles from a static spherically symmetric black hole surrounded by quintessence. The results are consistent with an underlying unitary theory.  相似文献   
6.
We investigate a coupled quintessence scenario, which can provide a natural solution to the cosmic coincidence problem. We assume that the mass of dark matter particles depends on a power law function of the scalar field associated to dark energy and meanwhile the scalar field evolves in a power law potential. Since the dynamics of this system is dominated by an attractor solution, the mass of dark matter particles is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy becomes a constant at late times, and one thus solves the cosmic coincidence problem naturally. We then apply a statefinder diagnostic to this coupled quintessence scenario. It is shown that the evolving trajectory of this scenario in the s-r diagram is quite different from those of other dark energy models.  相似文献   
7.
The evolution of the quintessence in various stages of the universe, i.e., the radiation-, matter-, and quintessence-dominated stages, is closely related with the tracking behavior and the deceleration parameter of the universe. We gave the explicit relation between the equation-of-state of the quintessence in the epoch of the matter-quintessence equality and the inverse power index of the quintessence potential, obtained the constraint on this potential parameter coming from the present deceleration parameter, i.e., a low inverse power index. We point out that the low inverse power-law potential with a single term cannot work for the tracking solution. In order to have both of the tracker and the suitable deceleration parameter it is necessary to introduce at least two terms in the quintessence potential. We give the future evolution of the quintessential universe.  相似文献   
8.
We propose a variant of the quintessence theory in order to obtain an accelerated expansion of the Friedmann universe in the framework of the relativistic theory of gravity. The scalar field of dark energy creates the substance of quintessence. We show that the function V(Φ) that factors the Lagrangian of the scalar field Φ does not influence the evolution of the universe. We find some relations that allow finding the explicit time-dependence of Φ if only the function V(Φ) is chosen. __________ Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 152, No. 3, pp. 551–560, September, 2007.  相似文献   
9.
The expression of a time-dependent cosmological constant 1/t2 is interpreted as the energy density of a special type of the quaternionic field which is coupled to its own field energy. The general solution of the corresponding field equations yields the field energy which contains an integration constant t 0. If t 0 > 0 then the cosmological constant exhibits no initial singularity at t = 0. In the early universe the black energy associated with can be made small enough for the structure forming of galaxies getting, however, its observational value at the present time.  相似文献   
10.
We investigate a coupled quintessence scenario, which can provide a natural solution to the cosmic coincidence problem. We assume that the mass of dark matter particles depends on a power law function of the scalar field associated to dark energy and meanwhile the scalar field evolves in a power law potential. Since the dynamics of this system is dominated by an attractor solution, the mass of dark matter particles is forced to change with time as to ensure that the ratio between the energy densities of dark matter and dark energy becomes a constant at late times,and one thus solves the cosmic coincidence problem naturally. We then apply a statefinder diagnostic to this coupled quintessence scenario. It is shown that the evolving trajectory of this scenario in the s-r diagram is quite different from those of other dark energy models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号