首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   32篇
  国内免费   17篇
化学   70篇
晶体学   1篇
综合类   2篇
物理学   46篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   14篇
  2013年   2篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   5篇
  2008年   9篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1998年   1篇
排序方式: 共有119条查询结果,搜索用时 231 毫秒
1.
Efficient OLED devices have been fabricated using organometallic complexes of platinum group metals. Still, the high material cost and low stability represent central challenges for their application in commercial display technologies. Based on its innate stability, gold(III) complexes are emerging as promising candidates for high-performance OLEDs. Here, a series of alkynyl-, N-heterocyclic carbene (NHC)- and aryl-gold(III) complexes stabilized by a κ3-(N^C^C) template have been prepared and their photophysical properties have been characterized in detail. These compounds exhibit good photoluminescence quantum efficiency (ηPL) of up to 33 %. The PL emission can be tuned from sky-blue to yellowish green colors by variations on both the ancillary ligands as well as on the pincer template. Further, solution-processable OLED devices based on some of these complexes display remarkable emissive properties (ηCE 46.6 cd.A−1 and ηext 14.0 %), thus showcasing the potential of these motifs for the low-cost fabrication of display and illumination technologies.  相似文献   
2.
本文以低比例的磷光材料作为给体,制备了基于MoOx/C60:x%Ir(ppy)3的有机太阳能电池(OPV)器件.其中,C60为高比例的受体材料,金属配合物Ir(ppy)3为低比例的给体材料,MoOx为阳极缓冲层.通过一系列不同Ir(ppy)3比例的OPV器件对比研究,得出了最优器件结构.研究发现,当Ir(ppy)3比例足够小时,器件表现为肖特基势垒,开路电压(VOC)较大,短路电流(JSC)较小;随着Ir(ppy)3比例的增加,VOC逐渐减少,而JSC逐渐增大;当进一步增加Ir(ppy)3比例时,VOC趋于稳定,JSC开始减小.结果显示,5%Ir(ppy)3比例的器件性能最佳,效率达1.7%.为了使器件效率得到进一步提升,本研究组采用吸收光谱范围比C60更宽的C70作为受体材料,使光电转换效率进一步提升至3.0%.  相似文献   
3.
A series of novel red phosphorescent polymers is successfully developed through Suzuki cross‐coupling among ambipolar units, functionalized IrIII phosphorescent blocks, and fluorene‐based silane moieties. The photophysical and electrochemical investigations indicate not only highly efficient energy‐transfer from the organic segments to the phosphorescent units in the polymer backbone but also the ambipolar character of the copolymers. Benefiting from all these merits, the phosphorescent polymers can furnish organic light‐emitting diodes (OLEDs) with exceptional high electroluminescent (EL) efficiencies with a current efficiency (η L) of 8.31 cd A−1, external quantum efficiency (η ext) of 16.07%, and power efficiency (η P) of 2.95 lm W−1, representing the state‐of‐the‐art electroluminescent performances ever achieved by red phosphorescent polymers. This work here might represent a new pathway to design and synthesize highly efficient phosphorescent polymers.

  相似文献   

4.
Electroluminescent (EL) properties of Ir(III) complex, [(2,4-diphenylquinoli-ne)]2Iridium picolinic acid N-oxide [(DPQ)2Ir(pic-N-O)] were investigated using PEDOT:PSS and reduced graphene oxide (rGO) as a hole transport layer for solution processable phosphorescent organic light-emitting diodes (PhOLEDs). High performance solution-processable PhOLED with PEDOT:PSS and (DPQ)2Ir(pic-N-O) (8 wt%) doped CBP:TPD:PBD (8:56:12) host emission layer were fabricated to give a high luminance efficiency (LE) of 26.9 cd/A, equivelent to an external quantum efficiency (EQE) of 14.2%. The corresponding PhOLED with rGO as a hole transport layer exhibited the maximum brightness and LE of 13540 cd/m2 and 16.8 cd/A, respectively. The utilization of the solution processable rGO thin films as the hole transport layer offered the great potential to the fabrication of solution processable PhOLEDs.  相似文献   
5.
The preparation of the first soluble quaterrylene derivative featuring peripheral tert‐butyl substituents and sterically hindering, core‐anchored triflate groups has been achieved. This involves a facile synthetic route based on an oxidative coupling of perylene precursors in the presence of H2O2 as oxidant. The steric hindrance between the TfO substituents at the central bay position of the quaterrylene board triggers a strong deformation of the central perylene planarity, which forces the quaterrylene platform to adopt a twisted geometry as shown by X‐ray analysis. Exceptionally, photophysical investigations show that the core‐twisted quaterrylene phosphoresces in the NIR spectral region at 1716 nm. Moreover, third‐order nonlinear optical measurements on solutions and thin film containing the relevant molecule showed very large second hyperpolarizability values, as predicted by theoretical calculations at the CAM ‐B3LYP /6‐31G** level of theory, making this material very appealing for photonic applications.  相似文献   
6.
用“湿法”制备了长余辉发光材料,原料通过水溶液液相分子水平上的均匀混合,利用金属硝酸盐和有机还原剂在较低的温度下发生氧化还原燃烧反应,一步快速生成产品。加热起燃温度低至500℃,反应时间短,所制得的产品成份均匀,晶粒小,外观呈蓬松状态,易研磨粉碎,粉体表观密度小。以紫外-可见分光光度计测定分析了所制备样品在蓄光前后的反射光谱特征并作了探讨。结果表明,除表观密度外,“显法”与“干法”制备的长余辉发光材料的主要性质相同,紫外-可见反射光谱可以准确描述长余辉发光材料的紫外-可见光谱性能特征。  相似文献   
7.
A diversity‐oriented synthetic strategy allowed us to design a series of conjugated molecules containing multiple benzosilole units that can be utilized as efficient hole‐blocking materials for phosphorescent organic light emitting diodes (OLEDs). Some of these compounds showed a performance surpassing that of the current standard, bathocuproine. The new compounds were easily synthesized in a modular fashion from a previously reported 3‐stannyl benzosilole building unit. Studies on the properties of these compounds in solution and in the solid state indicate that they possess high electron affinity, high ionization potential, and form stable amorphous films that show high electron‐drift mobility. The correlation between their molecular properties and the efficiency of the OLED device performance is also investigated.  相似文献   
8.
High efficiency single layer blue phosphorescent organic light-emitting diodes (PHOLEDs) without any charge transport layer were developed. A mixed host of spirobifluorene based phosphine oxide (SPPO13) and 1, 1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) was used as the host in the emitting layer. A high maximum external quantum efficiency of 15.8% and a quantum efficiency of 8.6% at 1000 cd/m2 were achieved in the single-layer blue PHOLEDs without any charge transport layer. The maximum power efficiency and power efficiency at 1000 cd/m2 were 31.4 and 16.9 lm/W, respectively.  相似文献   
9.
A series of phosphorescent cyclometalated iridium complexes with 2,5‐diphenylpyridine‐based ligands has been synthesized and characterized to investigate the effect of the simple ligand modification on photophysics, thermostability and electrochemistry. The complexes have the general structure (CN)2Ir(acac), where CN is a monoanionic cyclometalating ligand [e.g. 2,5‐diphenylpyridyl (dppy), 2,5‐di(4‐methoxyphenyl)pyridyl (dmoppy), 2,5‐di(4‐ethoxyphenyl)pyridyl (deoppy) and 2,5‐di(4‐ethylphenyl)pyridyl (deppy)]. The absorption, emission, cyclic voltammetry and thermostability of the complexes were systematically investigated. The (dppy)2Ir(acac) has been characterized using X‐ray crystallography. Calculation on the electronic ground state of (dppy)2Ir(acac) was carried out using B3LYP density functional theory. The highest occupied molecular orbital (HOMO) level is a mixture of Ir and ligand orbitals, while the lowest occupied molecular orbital (LUMO) is predominantly dppy ligand‐based. Electrochemical studies showed the oxidation potentials of (dmoppy)2Ir(acac), (deoppy)2Ir(acac), (deppy)2Ir(acac) were smaller than that of (ppy)2Ir(acac), while the oxidation potential of (dppy)2Ir(acac) was larger relative to (ppy)2Ir(acac). The 10% weight reduction temperatures of these complexes were above that of (ppy)2Ir(acac). All complexes exhibited intense green photoluminescence, which has been attributed to MLCT triplet emission. The maximum emission wavelengths in CH2Cl2 at room temperature were in the range 531–544 nm, which is more red‐shifted than that of (ppy)2Ir(acac). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
10.
To take advantage of the luminescent properties of d6 transition metal complexes to label proteins, versatile bifunctional ligands were prepared. Ligands that contain a 1,2,3‐triazole heterocycle were synthesised using CuI catalysed azide–alkyne cycloaddition “click” chemistry and were used to form phosphorescent IrIII and RuII complexes. Their emission properties were readily tuned, by changing either the metal ion or the co‐ligands. The complexes were tethered to the metalloprotein transferrin using several conjugation strategies. The IrIII/RuII–protein conjugates could be visualised in cancer cells using live cell imaging for extended periods without significant photobleaching. These versatile phosphorescent protein‐labelling agents could be widely applied to other proteins and biomolecules and are useful alternatives to conventional organic fluorophores for several applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号