首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1503篇
  免费   253篇
  国内免费   203篇
化学   1424篇
晶体学   16篇
力学   28篇
综合类   3篇
数学   14篇
物理学   474篇
  2024年   8篇
  2023年   20篇
  2022年   46篇
  2021年   61篇
  2020年   115篇
  2019年   92篇
  2018年   58篇
  2017年   76篇
  2016年   108篇
  2015年   80篇
  2014年   92篇
  2013年   178篇
  2012年   105篇
  2011年   103篇
  2010年   71篇
  2009年   77篇
  2008年   102篇
  2007年   88篇
  2006年   83篇
  2005年   86篇
  2004年   67篇
  2003年   52篇
  2002年   41篇
  2001年   49篇
  2000年   28篇
  1999年   21篇
  1998年   20篇
  1997年   6篇
  1996年   5篇
  1994年   8篇
  1993年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1959条查询结果,搜索用时 15 毫秒
1.
Employing radical bridges between anisotropic metal ions has been a viable route to achieve high-performance single-molecule magnets (SMMs). While the bridges have been mainly considered for their ability to promote exchange interactions, the crystal-field effect arising from them has not been taken into account explicitly. This lack of consideration may distort the understanding and limit the development of the entire family. To shed light on this aspect, herein we report a theoretical investigation of a series of N -radical-bridged diterbium complexes. It is found that while promoting strong exchange coupling between the terbium ions, the N -radical induces a crystal field that interferes destructively with that of the outer ligands, and thus reduces the overall SMM behavior. Based on the theoretical results, we conclude that the SMM behavior in this series could be further maximized if the crystal field of the outer ligands is designed to be collinear with that of the radical bridge. This conclusion can be generalized to all exchange-coupled SMMs.  相似文献   
2.
Enhancement of axial magnetic anisotropy is the central objective to push forward the performance of Single-Molecule Magnet (SMM) complexes. In the case of mononuclear lanthanide complexes, the chemical environment around the paramagnetic ion must be tuned to place strongly interacting ligands along either the axial positions or the equatorial plane, depending on the oblate or prolate preference of the selected lanthanide. One classical strategy to achieve a precise chemical environment for a metal centre is using highly structured, chelating ligands. A natural approach for axial-equatorial control is the employment of macrocycles acting in a belt conformation, providing the equatorial coordination environment, and leaving room for axial ligands. In this review, we present a survey of SMMs based on the macrocycle belt motif. Literature systems are divided in three families (crown ether, Schiff-base and metallacrown) and their general properties in terms of structural stability and SMM performance are briefly discussed.  相似文献   
3.
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.  相似文献   
4.
A new kind of nanocomposite (NC) hydrogel with Na‐montmorillonite (MMT) is presented in this article. The NC hydrogels were synthesized by free radical copolymerization of acrylamide and (3‐acrylamidopropyl) trimethylammonium chloride (ATC) in the presence of MMT and N,N′‐methylene‐bis‐acrylamide used as chemical cross‐linker. Due to the cation‐exchange reaction between MMT and ATC (cationic monomer) during the synthesis of NC hydrogels, MMT platelets were considered chemical “plane” cross‐linkers, different from “point” cross‐linkers. With increasing amount of MMT, the crosslinking degree enhanced, causing a decrease of the swelling degree at equilibrium. Investigations of mechanical properties indicated that NC hydrogels exhibited enhanced strength and toughness, which resulted from chemical interaction between exfoliated MMT platelets and polymer chains in hydrogels. Dynamic shear measurements showed that both storage modulus and loss modulus increased with increasing MMT content. The idea described here provided a new route to prepare hydrogels with high mechanical properties by using alternative natural Na‐MMT. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1020–1026  相似文献   
5.
Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.  相似文献   
6.
卢春生  米耀荣 《物理》2006,35(7):550-552
在聚合物基体中掺入少量的层状硅酸盐所制备的聚合物/粘土纳米复合材料,其阻隔性能明显地优于纯聚合物及其传统的复合材料。实验及分析结果表明,聚合物/粘土纳米复合材料的微观结构和阻隔性能主要受控于粘土剥离后的径厚比.一简单的重整化群模型被用来评估粘土几何因素(诸如径厚比、取向、剥离程度等)对聚合物/粘土纳米复合材料阻隔性能的影响,所得到的逾渗阈值及最佳粘土含量与实验结果吻合。  相似文献   
7.
We present susceptibility, microwave resistivity, NMR and heat-capacity results for Li1-xZnx(V1-yTiy)2O4 with 0 ? x ? 0.3 and 0 ? y ? 0.3. For all doping levels the susceptibility curves can be fitted with a Curie-Weiss law. The paramagnetic Curie-Weiss temperatures remain negative with an average value close to that of the pure compound Θ≈ - 36 K. Spin-glass anomalies are observed in the susceptibility, heat-capacity and NMR measurements for both type of dopants. From the temperature dependence of the spin-lattice relaxation rate we found critical-dynamic behavior in the Zn doped compounds at the freezing temperatures. For the Ti-doped samples two successive freezing transitions into disordered low-temperature states can be detected. The temperature dependence of the heat capacity for Zn-doped compounds does not resemble that of canonical spin glasses and only a small fraction of the total vanadium entropy is frozen at the spin-glass transitions. For pure LiV2O4 the spin-glass transition is completely suppressed. The temperature dependence of the heat capacity for LiV2O4 can be described using a nuclear Schottky contribution and the non-Fermi liquid model, appropriate for a system close to a spin-glass quantum critical point. Finally an ( x / y , T )-phase diagram for the low-doping regime is presented. Received 16 March 2001 and Received in final form 30 October 2001  相似文献   
8.
A guest-host nanocomposite based on electroconducting polyaniline doped with 12-phosphotungstic acid and V2O5 as well as its bifunctional analog containing not more than 5 mass% nanosized platinum were obtained. A study was carried out on the structure of these nanocomposites, their redox characteristics, and electrocatalytic activity in the reduction of oxygen. These nanocomposites were found to display catalytic properties in the electrochemical reduction of oxygen, while the presence of even a slight amount of nanosized platinum in the bifunctional composite leads to a significant increase in its electrocatalytic activity. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 307–314, September–October, 2007.  相似文献   
9.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   
10.
The electrochemical and mechanical properties of nanocomposite solid-state electrolyte membranes deposited using a laser direct-write technique from a suspended solution comprised of an ionic liquid (1,2-dimethyl-3-n-butylimidazolium-bis-trifluoromethanesulfonylimide)-polymer (poly(vinylidene fluoride-co-hexafluoropropylene)) matrix with dispersed nano-particles (TiO2) are reported and discussed. These laser printed nanocomposite solid-state membranes are shown to exhibit the proper electrochemical behavior for ionic liquids while maintaining the strength and flexibility of the polymer matrix. This combination of physical properties and deposition technique makes these deposited nanocomposite membranes ideally suited for use as an electrolyte/separator in Li micro-batteries. Sample Li micro-batteries using these laser printed nanocomposite membranes have been fabricated and their charge/discharge behavior tested, demonstrating the feasibility of using these nanocomposite membranes in Li micro-battery applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号