首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
物理学   5篇
  2020年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2002年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
微腔激光器的发展与应用   总被引:1,自引:0,他引:1  
韩艳玲  王宏 《物理与工程》2002,12(6):33-35,45
本文探讨了微腔激光器的分类、基本原理及特点,并简单介绍了目前几种微型激光器的发展及应用。  相似文献   
2.
ABSTRACT

This letter reports the optical pumped lasing behaviours of a three-layer Bragg resonance cavity consisting of dye-doped cholesteric liquid crystal (DDCLC) microdroplet, polyglycerol-2 and hollow glass microsphere. The function of PG2 is to control the parallel anchoring of the liquid crystal (LC) molecules on the surface of the LC microdroplet. The whispering-gallery mode (WGM), radial Bragg (photonic bandgap, PBG) mode and Bragg WGM (BWGM) are observed in DDCLC microspheres with different helical pitches and LC refractive indices. The formation mechanisms of six types of lasing emission conditions are analysed in detail. The study results present the prospect of controlling the output mode of the laser. Furthermore, such solid shell-based DDCLC microspheres have outstanding potential applications in miniaturised 3D Bragg lasers, sensors, and integrated and tunable optical devices.  相似文献   
3.
We present very compact, as short as 20 m long, low-threshold in-plane semiconductor lasers operating at a wavelength of 980 nm, in which microstructured mirrors have been formed at both cavity ends by deep reactive ion etching (RIE). The back mirror consists of a seven-period third order Bragg reflector with a measured reflectivity of 95%. The front mirror has a similar configuration, but consists of three periods with a lower reflectivity (80%) in order to allow output coupling. Lasing has been achieved from 20 m long and 8 m wide devices exhibiting a current threshold of 7 mA. These are among the shortest in-plane Fabry–Perot electrically pumped lasers demonstrated to date. Design issues are discussed, along with experimental data from which values for the reflectivity of the mirrors are derived. State-of-the-art electron beam lithography (EBL) and high-aspect-ratio RIE have been used for device fabrication, while additional strategies are proposed for the further improvement of the device performance.  相似文献   
4.
Optical whispering‐gallery mode (WGM) microcavities featuring ultrahigh Q factors and small mode volumes enhance significantly the interaction between light and matter, becoming an excellent platform for achieving ultralow‐threshold microlasers. However, the emission of traditional WGMs is isotropic due to the rotational symmetry of cavity geometries, which hinders the potential photonics applications. In this review, the progress in WGM microcavities towards unidirectional laser emission is summarized. When a subwavelength scatterer is placed on the boundary of the microcavity, the unidirectional emission occurs due to the collimation effect of the microcavity‐enhanced scattering field. Furthermore, microcavities deformed from the circular shapes can not only produce the chaos‐assisted unidirectional emission, but also maintain high Q factors by special design and fabrication processes. Finally, gratings along the circumference of the WGM microdisk or microring can scatter the WGMs in the vertical direction. The review also lists several important applications of these types of microcavities, such as wide‐band laser illumination source, free‐space coupling, evanescent‐field enhancement, optical energy storage, and sensing.

  相似文献   

5.
Whispering gallery mode (WGM) optical microresonators have attracted intense interests in the past decades. The combination of high quality factors (Q) and small mode volumes of modes in WGM resonators significantly enhances the light‐matter interactions, making them excellent cavities for achieving low threshold and narrow linewidth lasers. In this Review, the progress in WGM microcavity lasers is summarized, and the laser performance considering resonator geometries and materials as well as lasing mechanisms is discussed. Label‐free detection using WGM resonators has emerged as highly sensitive detection schemes. However, the resolution is mainly limited by the cavity Q factor which determines the mode linewidth. Microcavity lasers, due to their narrow laser spectral width, could greatly improve the detection resolution. Some recent developments in sensing using microcavity lasers are discussed.  相似文献   
6.
Tian&#  rui ZHAI&#  &#  &#  &#  &#  Da&#  he LIU&#  &#  &#  &#  &#  Xiang&#  dongZHANG&#  &#  &#  &#  &# 《Frontiers of Physics》2010,5(3):266
Although the investigation on photonic band gap materials has been done more than two decades, it is still a big challenge to fabricate three-dimensional photonic crystal (PC) possessing wide band gaps in visible range. In this article, we have reviewed recent progresses on fabricating the PC with low refractive index material in visible range. In contrast to the material with large refractive index, it is cheap to use low refractive index material in fabricating the PC and will be greatly beneficial for future industrial productions. The holographic method to fabricate such a PC has been introduced, applying it to the design of the microlaser has also been discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号