首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2013年   1篇
排序方式: 共有1条查询结果,搜索用时 19 毫秒
1
1.
We examine, via two-dimensional numerical simulation of a model system, some unsteady transient ignition scenarios and sustained oscillatory combustion modes that can occur in a single-pass, conductive channel, premixed microburner. These issues are relevant to the problem of ignition, evolution to stable combustion and the operational modes of microcombustors. First, we describe an unsteady ignition sequence that may occur when a single-pass microburner with initially cold walls has its exit walls heated and maintained at a fixed temperature. In particular, we demonstrate that as the heat from the exit walls propagates down the microburner walls, a reaction wave is driven rapidly down the channel towards the inlet via a sequence of oscillatory ignition and quenching transients. This scenario has been observed experimentally during the ignition of a single-pass microburner. Secondly, we show how an initial axial wall temperature gradient can lead to a variety of sustained combustion modes within the channel, including stable stationary flames, regimes of periodic motion involving quenching and re-ignition, regimes of regular oscillatory combustion, and regimes consisting of a combination of re-ignition/quenching events and regular oscillatory motions, all of which have been observed experimentally.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号