首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
化学   3篇
物理学   1篇
  2022年   1篇
  2021年   1篇
  2012年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
We consider the effect of the order in which In and CuCl impurities are added during thermal doping on the luminescence characteristics of ZnS, and also their role in formation of emission centers in zinc sulfide. We show that the order in which the impurities (acting as activators or coactivators) are added to the ZnS plays the determining role in formation of the spectral characteristics of the luminophore obtained. We have established that adding indium first during thermal doping of zinc sulfide with In and CuCl prevents diffusion of Cu into the interior of the ZnS. Adding indium after CuCl or adding indium simultaneously with CuCl prevents formation of the Cu2S and CuS phases or promotes degradation of the indicated phases in ZnS. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 5, pp. 601–605, September–October, 2006.  相似文献   
2.
Three new benzothiadiazole (BTD)-containing luminophores with different configurations of aryl linkers have been prepared via Pd-catalyzed cross-coupling Suzuki and Buchwald–Hartwig reactions. Photophysical and electroluminescent properties of the compounds were investigated to estimate their potential for optoelectronic applications. All synthesized structures have sufficiently high quantum yields in film. The BTD with aryl bridged carbazole unit demonstrated the highest electrons and holes mobility in a series. OLED with light-emitting layer (EML) based on this compound exhibited the highest brightness, as well as current and luminous efficiency. The synthesized compounds are not only luminophores with a high photoluminescence quantum yield, but also active transport centers for charge carriers in EML of OLED devices.  相似文献   
3.
设计并制备具不同官能团的钌(Ⅱ)邻菲啰啉配合物——[Ru(bpy)2(phen-NO2)](PF6)2(1),[Ru(bpy)2(phen-Br)](PF6)2(2),[Ru(bpy)2(phen-NH2)](PF6)2(3),[Ru(bpy)2(bphen)](PF6)2(4),其中,bpy为2,2’-联吡啶,phen-NO2为5-硝基-邻菲啰啉,phen-Br为5-溴-1,10-菲啰啉,phen-NH2为5-氨基-邻菲啰啉,bphen为4,7-二苯基-邻菲啰啉.借助核磁共振(NMR)、红外光谱(FTIR)、元素分析、紫外可见光谱(UV-vis)和荧光光谱法对其进行了分析与表征.结果表明:配合物2~4在蓝-紫色可见光区域有较强吸收、可发射出明亮的橙红色荧光、具荧光量子效率(Φ)高、激发态寿命(τ)长、Stocks位移值较大(147~180 nm)和优良的氧致荧光淬灭性能(Ksv≥3.5,(I0/I)max≥4.0)等光物理性质.其中,具接枝型官能团氨基的配合物3的量子效率(Φ)=10%,τ=381.8 ns,Ksv=3.49,(I0/I)max=4.33;而溴修饰的配合物2以高达18%的荧光量子效率、634.7 ns的激发态寿命、180 nm的Stocks位移和Ksv=4.59,氧淬灭参数(I0/I)max=5.29,使之最有希望成为接枝型、较高性能的光学氧传感器的候选氧敏指示剂.  相似文献   
4.
Fluorescent dyes absorbing and emitting in the visible and near-IR regions are promising for the development of fluorescent probes for labeling and bio-visualization of body cells. The ability to absorb and emit in the long-wavelength region increases the efficiency of recording the spectral signals of the probes due to the higher permeability of the skin layers. Compared to other fluorescent dyes, BODIPYs are attractive due to their excellent photophysical properties–narrow absorption and emission, intense fluorescence, simple signal modulation for the practical applications. As part of conjugates with biomolecules, BODIPY could act as a biomarker, but as therapeutic agent, which allows solving several problems at once-labeling or bioimaging and treatment based on the suppression of pathogenic microflora and cancer cells, which provides a huge potential for practical application of BODIPY conjugates in medicine. The review is devoted to the discussion of the recent, promising directions of BODIPY application in the field of conjugation with biomolecules. The first direction is associated with the development of BODIPY conjugates with drugs, including compounds of platinum, paclitaxel, chlorambucil, isoxazole, capsaicin, etc. The second direction is devoted to the labeling of vitamins, hormones, lipids, and other biomolecules to control the processes of their transport, localization in target cells, and metabolism. Within the framework of the third direction, the problem of obtaining functional optically active materials by conjugating BODIPY with other colored and fluorescent particles, in particular, phthalocyanines, is being solved.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号