首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17487篇
  免费   3169篇
  国内免费   3072篇
化学   16118篇
晶体学   451篇
力学   482篇
综合类   105篇
数学   321篇
物理学   6251篇
  2024年   47篇
  2023年   210篇
  2022年   499篇
  2021年   588篇
  2020年   865篇
  2019年   668篇
  2018年   614篇
  2017年   730篇
  2016年   972篇
  2015年   910篇
  2014年   1027篇
  2013年   1792篇
  2012年   1228篇
  2011年   1434篇
  2010年   1184篇
  2009年   1241篇
  2008年   1222篇
  2007年   1200篇
  2006年   1149篇
  2005年   952篇
  2004年   872篇
  2003年   767篇
  2002年   649篇
  2001年   474篇
  2000年   408篇
  1999年   355篇
  1998年   309篇
  1997年   255篇
  1996年   183篇
  1995年   196篇
  1994年   169篇
  1993年   129篇
  1992年   93篇
  1991年   59篇
  1990年   45篇
  1989年   28篇
  1988年   44篇
  1987年   28篇
  1986年   16篇
  1985年   17篇
  1984年   19篇
  1983年   17篇
  1982年   11篇
  1981年   15篇
  1980年   8篇
  1979年   7篇
  1976年   4篇
  1975年   5篇
  1973年   4篇
  1972年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In this study, the transverse relaxation time (T2) of activated carbon (AC) in different relative environment humidity was detected firstly by low-field nuclear magnetic resonance (LFNMR). The pore size (diameter) of AC distributions was calculated by the relationship between T2 and surface relaxation rate (ρ), where ρ was obtained by the detection of nine porous materials with known pore size. The results showed that the pore size distributions of AC calculated by ρ < 0.19 nm/ms were in good agreement with that obtained by nitrogen adsorption method and proved that LFNMR as a new detection method was feasible for characterizing AC pore size distribution.  相似文献   
2.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
3.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
4.
A single bubble absorption column was used to examine the effect of hydrodynamic on carbon dioxide (CO2) and hydrogen sulfide (H2S) absorption in pure water and water-based nanofluids dispersed with neat, and OH and NH2 functionalized multiwall carbon nanotubes (MWCNTs). Sodium dodecyl sulfate (SDS) was used as a surfactant and stabilizer. The maximum absorption of CO2 and H2S were found to be 0.0038 mmol/m2·s and 0.056 mmol/m2·s using NH2-MWCNTs /nanofluid with 0.5 wt% content, respectively. The diffusion coefficients of gases into the nanofluids were computed by using an equation attained based on Dankwert’s theory. A last, an empirical correlation was proposed to determine the Sherwood number for the absorption of the aforementioned gases into the nanofluids.  相似文献   
5.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
6.
Ioan Baldea 《中国物理 B》2022,31(12):123101-123101
Most existing studies assign a polyynic and cumulenic character of chemical bonding in carbon-based chains relying on values of the bond lengths. Building on our recent work, in this paper we add further evidence on the limitations of such an analysis and demonstrate the significant insight gained via natural bond analysis. Presently reported results include atomic charges, natural bond order and valence indices obtained from ab initio computations for representative members of the astrophysically relevant neutral and charged HC2k/2k+1H chain family. They unravel a series of counter-intuitive aspects and/or help naive intuition in properly understanding microscopic processes, e.g., electron removal from or electron attachment to a neutral chain. Demonstrating that the Wiberg indices adequately quantify the chemical bonding structure of the HC2k/2k+1H chains—while the often heavily advertised Mayer indices do not—represents an important message conveyed by the present study.  相似文献   
7.
A liquid dewetting method for the determination of the viscoelastic properties of ultrathin polymer films has been extended to study thickness effects on the properties of ultrathin polycarbonate (PC) films. PC films with film thicknesses ranging from 4 to 299 nm were placed on glycerol at temperatures from below the macroscopic glass transition temperature (Tg) to above it with the dewetting responses being monitored. It is found that the isothermal creep results for films of the same thickness, but dewetted at different temperatures can be superposed into one master curve, which is consistent with the fact of PC being a thermorheologically simple material. Furthermore, the results show that the Tg of PC thin films is thickness dependent, but the dependence is weaker than the results for freely standing films and similar to literature data for PC films supported on rigid substrates. It was also found that the rubbery plateau region for the PC films stiffens dramatically, but still less than what has been observed for freely standing polycarbonate films. The rubbery stiffening is discussed in terms of a recently reported model that relates macroscopic segmental dynamics with the stiffening. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1559–1566  相似文献   
8.
The development of high‐surface‐area carbon electrodes with a defined pore size distribution and the incorporation of pseudo‐active materials to optimize the overall capacitance and conductivity without destroying the stability are at present important research areas. Composite electrodes of carbon nano‐onions (CNOs) and polypyrrole (Ppy) were fabricated to improve the specific capacitance of a supercapacitor. The carbon nanostructures were uniformly coated with Ppy by chemical polymerization or by electrochemical potentiostatic deposition to form homogenous composites or bilayers. The materials were characterized by transmission‐ and scanning electron microscopy, differential thermogravimetric analyses, FTIR spectroscopy, piezoelectric microgravimetry, and cyclic voltammetry. The composites show higher mechanical and electrochemical stabilities, with high specific capacitances of up to about 800 F g?1 for the CNOs/SDS/Ppy composites (chemical synthesis) and about 1300 F g?1 for the CNOs/Ppy bilayer (electrochemical deposition).  相似文献   
9.
In many organic electronic devices functionality is achieved by blending two or more materials, typically polymers or molecules, with distinctly different optical or electrical properties in a single film. The local scale morphology of such blends is vital for the device performance. Here, a simple approach to study the full 3D morphology of phase‐separated blends, taking advantage of the possibility to selectively dissolve the different components is introduced. This method is applied in combination with AFM to investigate a blend of a semiconducting and ferroelectric polymer typically used as active layer in organic ferroelectric resistive switches. It is found that the blend consists of a ferroelectric matrix with three types of embedded semiconductor domains and a thin wetting layer at the bottom electrode. Statistical analysis of the obtained images excludes the presence of a fourth type of domains. The criteria for the applicability of the presented technique are discussed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1231–1237  相似文献   
10.
ABSTRACT

Nano-polycrystalline diamond (NPD) with various grain sizes has been synthesized from glassy carbon at pressures 15–25?GPa and temperatures 1700–2300°C using multianvil apparatus. The minimum temperature for the synthesis of pure NPD, below which a small amount of compressed graphite was formed, significantly increased with pressure from ~1700°C at 15?GPa to ~1900°C at 25?GPa. The NPD having grain sizes less than ~50?nm was synthesized at temperatures below ~2000°C at 15?GPa and ~2300°C at 25?GPa, above which significant grain growth was observed. The grain size of NPD decreases with increasing pressure and decreasing temperature, and the pure NPD with grain sizes less than 10?nm is obtained in a limited temperature range around 1800–2000°C, depending on pressure. The pure NPD from glassy carbon is highly transparent and exhibits a granular nano-texture, whose grain size is tunable by selecting adequate pressure and temperature conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号