首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   3篇
化学   23篇
力学   1篇
物理学   7篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2008年   2篇
  2007年   2篇
  2004年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Keratin is widely recognized as a high‐quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self‐assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross‐linking agent, the extracted keratin can self‐assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme‐driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self‐assemble into injectable hydrogels for biomedical engineering.  相似文献   
2.
Raman and IR spectroscopy were used to investigate the changes induced in yak hair keratin by the straightening treatment based on glyoxylic acid. The amino acidic residues that appeared involved in the reaction with glyoxylic acid were serine and lysine; the involvement of the latter was deduced by the spectroscopic detection of iminic species, resulting from the reaction between the aminic group of lysine and the carbonyl group of glyoxylic acid. The reaction with glyoxylic acid induced conformational rearrangements that mainly involved the fibre bulk rather than the cuticle. Changes in the average tyrosine environment and its hydrogen‐bonding state were detected: at increasing glyoxylic acid incorporation, the tyrosine residues appeared more exposed, probably because of H‐bond interactions with the COOH group. The distribution of the disulfide bridge conformation was also affected, although no cleavage of the S–S bond was detected, in agreement with the shiny and healthy appearance of the fibres. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
3.
Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.  相似文献   
4.
Nile crocodiles undergo a three to five order of magnitude increase in body size during their lifespan. This shift coincides with a change in resource and habitat use which influences the strength, type and symmetry of interactions with other species. Identifying size-specific crocodile groups displaying similar traits is important for conservation planning. Here, we illustrate how stable carbon (δ13 C) and nitrogen (δ15 N) isotope analysis of scute keratin, together with breakpoint modelling analysis can be used to characterise ontogenetic niche shifts. Using a sample set of 238 crocodiles from the Okavango Delta, Botswana (35–463 cm total length), we found prominent size-related changes in the scute keratin δ13 C and δ15 N profiles close to 40 and 119 cm snout-vent length. The first shift corroborated the findings of a traditional stomach-content study conducted on the same population at the same time, and the second conformed to known crocodile ecology. This approach can be used as a first approximation to identify size-specific groups within crocodile populations, and these can then be investigated further using isotopic or other methods.  相似文献   
5.
In this study, new bio‐based magnetic molecularly imprinted polymer nanoparticles (∼23 nm) were synthesized from keratin extracted from chicken feathers and methacrylate‐functionalized Fe3O4 nanoparticles for its potential application in separation and removal of bisphenol A from water. The prepared magnetic molecularly imprinted polymer was characterized by Fourier‐transform infrared spectroscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, alternative gradient field magnetometry, and energy‐dispersive X‐ray spectroscopy. The sorption of bisphenol A was investigated by changing the influencing factors such as pH, immersion time, Fe3O4 nanoparticles dosage, and the initial concentration of bisphenol A. Results illustrated that sorption was very fast and efficient (Q= 600 mg/g) having a removal efficiency of ∼98% in 40 min of immersion. The adsorption process showed better conformity with the Weber−Morris kinetics and the Freundlich isotherm model. The selectivity of bisphenol A by adsorbent was checked in the presence of hydroquinone, phenol, tetrabromobisphenol, and 4,4′‐biphenol as interferences.  相似文献   
6.
Regeneration of the hoof keratin from ionic liquids was never successful in the past because the ionic liquids were not strong enough. However, this biomaterial starts to play a central role for the preparation of biofilms in the future. In the present study, hoof keratin was regenerated for the first time from an ionic liquid by experiment and characterized by FTIR spectroscopy, Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). As 1-Ethyl-3-methylimidazolium acetate is strong enough to dissolve hooves, which have a lot of disulfide bonds, a Molecular Dynamics (MD) simulation was performed with this ionic liquid and diphenyl disulfide. The MD simulation reveals that not only the cation as postulated after experiments were carried out, but also the anion is very important for the dissolution process. This complete picture was and is not accessible via experiments and is therefore valuable for future investigations. The anion always interacts with the disulfide bond, whereas the cation prefers in some situations a strong H−O interaction with the anion. If the cations and the anions are separated from each other so that the cation can not interact with the anion, both interact with the disulfide bond. The high solvation power of this solvent is shown by the fact that the cation interacts from the left and right side and the anion from above and below the disulfide bond.  相似文献   
7.
This work reports on producing wool keratin nanoparticles through electrospraying. Wool keratin is a natural biodegradable and biocompatible protein. Keratin powder has found application in hygiene, cosmetics, filtration, tissue engineering scaffolds, and controlled drug release. Like other nano materials, the performance of keratin in submicron size range changes drastically. Electrospraying is a technique that is capable of producing nanosized, regular, and spherical particles. To prepare the electrospraying wool keratin solution, keratin was recovered from descaled wool fibers by dissolving it in mercaptoethanol first, and keratin sponge was obtained. Then, the keratin sponge was dissolved in formic acid that provided the electrospraying solution. This research involved primarily an investigation on the effect of important electrospraying conditions such as polymer concentration, feed rate, voltage, and nozzle‐collector distance on the average particle size of the electrosprayed nanoparticles. The results showed that the proper concentration of keratin in formic acid for the electrospraying keratin nanoparticle was about 0.5% (w/v). As far as electrospraying conditions are concerned, decreasing feed rate and increasing nozzle‐collector distance led to lower average particle size. Voltage did not show a practically significant effect on the average particle size. The average size of the electrosprayed keratin nanoparticles fabricated in this work lies in the range of 36–72 nm. Fourier transform infrared Fourier transform infrared (FTIR) spectra showed that electrosprayed keratin nanoparticles contain –SO2–S– and –SO–S– linkages. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
8.
采在温和条件下羽毛角蛋白负载的Pd纳米颗粒可高效催化水中溴代芳烃与苯硼酸的偶联反应,且具有官能团的广泛适用性,生成的联苯类化合物可在反应液中沉淀出来,具有很好的产率和纯度.催化剂通过简单过滤可重复使用7次.  相似文献   
9.
A delicate intermediate filament-like network of mesophyll cells was observed both in maize and tobacco, using selective extraction together with whole-mount cell preparation for electron microscopy. The filament of the network is about 10 nm in diameter. Further test using immuno-gold labeling with anti-keratin antibodies indicated that the component of the intermediate filament-like system was keratin-like protein. Such a keratin-like intermediate filament system existing in plant cells was demonstrated for the first time. Meanwhile, 3-nm size filaments and their connection with 10-nm filaments were also shown in maize and tobacco protoplasts.  相似文献   
10.
以丙烯酰胺(AM)为单体,制备了羧甲基纤维素钠接枝丙烯酰胺共聚物(CMC-g-AM)。以2,4-二氯苯氧乙酸(2,4-D)为模型药物,以羽毛蛋白(FK)为共混改性剂,采用挤压法制备了CMC-g-AM/海藻酸钠(SA)/羽毛蛋白载药微球。利用红外光谱、光学显微镜、激光粒度仪分别对接枝共聚物的结构、载药微球的形貌以及粒径分布进行了表征,并探讨了不同的接枝共聚物、羽毛蛋白用量、交联剂浓度和交联时间对缓释微球的载药量和缓释性能影响。结果表明,当CMC-g-AM的合成单体比AM:CMC为3:1,羽毛蛋白用量为30%,交联剂浓度为0.7 mol·L-1,交联时间为1 h,载药微球的载药量较高,为16.7%。复合微球平均粒径为1.6 mm。载药微球具有良好的缓释性能,释药曲线符合Higuchi动力学方程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号