首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7739篇
  免费   1328篇
  国内免费   745篇
化学   2954篇
晶体学   94篇
力学   904篇
综合类   54篇
数学   577篇
物理学   5229篇
  2024年   16篇
  2023年   91篇
  2022年   179篇
  2021年   213篇
  2020年   307篇
  2019年   245篇
  2018年   225篇
  2017年   228篇
  2016年   349篇
  2015年   267篇
  2014年   305篇
  2013年   575篇
  2012年   370篇
  2011年   437篇
  2010年   347篇
  2009年   468篇
  2008年   509篇
  2007年   548篇
  2006年   476篇
  2005年   377篇
  2004年   374篇
  2003年   389篇
  2002年   352篇
  2001年   303篇
  2000年   306篇
  1999年   239篇
  1998年   215篇
  1997年   145篇
  1996年   110篇
  1995年   123篇
  1994年   85篇
  1993年   76篇
  1992年   69篇
  1991年   50篇
  1990年   60篇
  1989年   50篇
  1988年   42篇
  1987年   30篇
  1986年   40篇
  1985年   29篇
  1984年   30篇
  1983年   10篇
  1982年   22篇
  1981年   23篇
  1980年   22篇
  1979年   13篇
  1978年   14篇
  1977年   15篇
  1976年   12篇
  1974年   8篇
排序方式: 共有9812条查询结果,搜索用时 15 毫秒
1.
High-reflective multilayer laser coatings are widely used in advanced optical systems from high power laser facilities to high precision metrology systems. However, the real interface quality and defects will significantly affect absorption/scattering losses and laser induced damage thresholds of multilayer coatings. With the recent advances in the control of coating design and deposition processes, these coating properties can be significantly improved when properly engineered the interface and defects. This paper reviews the recent progress in the physics of laser damage, optical losses and environmental stability involved in multilayer reflective coatings for high power nanosecond near-infrared lasers. We first provide an overview of the layer growth mechanisms, ways to control the microstructures and reduce layer roughness, as well as the nature of defects which are critical to the optical loss and laser induced damage. Then an overview of interface engineering based on the design of coating structure and the regulation of deposition materials reveals their ability to improve the laser induced damage threshold, reduce the backscattering, and realize the desirable properties of environmental stability and exceptional multifunctionality. Moreover, we describe the recent progress in the laser damage and scattering mechanism of nodule defects and give the approaches to suppress the defect-induced damage and scattering of the multilayer laser coatings. Finally, the present challenges and limitations of high-performance multilayer laser coatings are highlighted, along with the comments on likely trends in future.  相似文献   
2.
This paper infers from a generalized Picone identity the uniqueness of the stable positive solution for a class of semilinear equations of superlinear indefinite type, as well as the uniqueness and global attractivity of the coexistence state in two generalized diffusive prototypes of the symbiotic and competing species models of Lotka–Volterra. The optimality of these uniqueness theorems reveals the tremendous strength of the Picone identity.  相似文献   
3.
4.
We report optical and nonlinear optical properties of CuS quantum dots and nanoparticles prepared through a nontoxic, green, one-pot synthesis method. The presence of surface states and defects in the quantum dots are evident from the luminescent behavior and enhanced nonlinear optical properties measured using the open aperture Z-scan, employing 5 ns laser pulses at 532 nm. The quantum dots exhibit large effective third order nonlinear optical coefficients with a relatively lower optical limiting threshold of 2.3 J cm−2, and the optical nonlinearity arises largely from absorption saturation and excited state absorption. Results suggest that these materials are potential candidates for designing efficient optical limiters with applications in laser safety devices.  相似文献   
5.
This mini-review highlights key structural features that should be taken into account when creating ambipolar redox-active closed-shell metal-free molecules. This type of compound is strongly required for the fabrication of all-organic ‘poleless’ batteries and semiconductors. The suggested strategies aimed at stabilization of both oxidized (cationic) and reduced (anionic) redox-states are based on the comprehensive analysis of the most successful structures taken from the recent publications.  相似文献   
6.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   
7.
Recently, the potential use of organic π-radicals and related spin systems has been expanded to modern technological applications. The unique excited-state dynamics of organic π-radicals can be useful to improve the stability of photochemically unstable organic compounds, make the polarization transfer applicable to information technology, and achieve effective up-conversion of interest for luminescence bioimaging, among others. Furthermore, highly luminescent stable π-radicals have been recently reported, which are especially interesting for application in organic light-emitting devices owing to their potential to provide an internal quantum efficiency of 100 %. Thus, the excited-state nature of stable π-radicals as well as the control of their excited-state spin dynamics are emerging topics both in terms of fundamental science and related technological applications. In this minireview, we focus on the excited-state dynamics of both photostable non(weakly)-luminescent and luminescent π-radicals, which are opposites of each other. In particular, we cover the following topics: 1) effective generation of high-spin photoexcited states and control of the excited-state dynamics by using non-luminescent π-radicals, 2) unique excited-state dynamics of luminescent π-radicals and radical excimers, and 3) applications utilizing excited-state dynamics of π-radicals.  相似文献   
8.
9.
Nonclassical light states are important for both conceptual and practical reasons: they are basic ingredients in testing and exploring quantum foundations, and are crucial resources in quantum technologies. Various useful criteria have been developed to detect nonclassicality in the literature, and several meaningful measures of nonclassicality have been introduced and measured experimentally. In this work, by use of a non-Hermitian generalization of the Wigner-Yanase-Dyson skew information and playing with operator ordering in evaluating average photon number, we develop a novel family of criteria for detecting nonclassicality of light based on Lieb's concavity, which is a deep and powerful result concerning interaction between quantum states and observables. We elucidate the information-theoretic as well as the physical meaning of the criteria, and illustrate their effectiveness in capturing and quantifying nonclassicality of various important light states.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号