首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
化学   1篇
物理学   1篇
  2009年   1篇
  1991年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The solubility of CaSO3·1/2H2O(c) was studied under alkaline conditions (pH>8.2), in deaerated and deoxygenated Na2SO3 solutions ranging in concentration from 0.0002 to 0.4M and in CaCl2 solutions ranging in concentration from 0.0002 to 0.01M, for equilibration periods ranging from 1 to 7 days. Equilibrium was approached from both the over- and the under-saturation directions. In all cases, equilibrium was reached in <1 days. The aqueous Ca2+–SO 3 2– ion interactions can be satisfactorily modeled using either ion-association or ion-interaction aqueous thermodynamic models. In the ion-association model, the log K°=2.62±0.07 for Ca2++SO 3 2– CaSO 3 0 . In the Pitzer ion-interaction model, the binary parameters (0) and (1) for Ca2+–SO 4 2– were used, and the value of (2) was determined from the experimental data. As expected given the strong association constant, the value of (0) was quite small (about –134). We feel a combination of the two models is most useful. The logarithm of the thermodynamic equilibrium constant (K°) of the CaSO3·1/2H2O(c) solubility reaction (CaSO3·1/2H2O(c)Ca2++SO 3 2+ +0.5H2O) was found to be –6.64±0.07.  相似文献   
2.
The structures of the naturally occurring sulfite‐bearing minerals scotlandite, hannebachite and orschallite have been studied by Raman spectroscopy. Raman bands are observed for scotlandite PbSO3 at 935, 880, 622 and 474 cm−1 and are assigned to the (SO3)2−ν1(A1), ν3(E), ν2(A1) and ν4(E) vibrational modes, respectively. For hannebachite (CaSO3)2·H2O these bands are observed at 1005, 969 and 655 cm−1 with multiple bands for the ν4(E) mode at 444, 492 and 520 cm−1. The Raman spectrum of hannebachite is very different from that of the compound CaSO3·2H2O. It is proposed, on the basis of Raman spectroscopy, that in the mineral hannebachite, the sulfite anion bonds to Ca through the sulfur atom. The Raman spectrum of the mineral orschallite Ca3[SO4](SO3)2·12H2O is complex resulting from the overlap of sulfate and sulfite bands. Raman bands at 1005 cm−1, 1096 and 1215 cm−1 are assigned to the (SO4)2−ν1 symmetric and ν3 asymmetric stretching modes. The two Raman bands at 971 and 984 cm−1 are attributed to the (SO3)2−ν3(E) and ν1(A1) stretching vibrations. The formation of sulfite compounds in nature offers a potential mechanism for the removal of sulfates and sulfites from soils. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号