首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5376篇
  免费   597篇
  国内免费   391篇
化学   640篇
晶体学   47篇
力学   2763篇
综合类   62篇
数学   850篇
物理学   2002篇
  2024年   18篇
  2023年   55篇
  2022年   77篇
  2021年   84篇
  2020年   147篇
  2019年   109篇
  2018年   138篇
  2017年   156篇
  2016年   198篇
  2015年   151篇
  2014年   238篇
  2013年   497篇
  2012年   222篇
  2011年   247篇
  2010年   205篇
  2009年   258篇
  2008年   279篇
  2007年   321篇
  2006年   337篇
  2005年   277篇
  2004年   290篇
  2003年   245篇
  2002年   192篇
  2001年   165篇
  2000年   171篇
  1999年   179篇
  1998年   151篇
  1997年   162篇
  1996年   121篇
  1995年   112篇
  1994年   80篇
  1993年   62篇
  1992年   83篇
  1991年   84篇
  1990年   38篇
  1989年   24篇
  1988年   40篇
  1987年   30篇
  1986年   28篇
  1985年   26篇
  1984年   11篇
  1983年   6篇
  1982年   12篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   5篇
  1977年   6篇
  1971年   2篇
  1957年   4篇
排序方式: 共有6364条查询结果,搜索用时 10 毫秒
1.
Cavitation erosion is caused in solids exposed to strong pressure waves developing in an adjacent fluid field. The knowledge of the transient distribution of stresses in the solid is important to understand the cause of damaging by comparisons with breaking points of the material. The modeling of this problem requires the coupling of the models for the fluid and the solid. For this purpose, we use a strategy based on the solution of coupled Riemann problems that has been originally developed for the coupling of 2 fluids. This concept is exemplified for the coupling of a linear elastic structure with an ideal gas. The coupling procedure relies on the solution of a nonlinear equation. Existence and uniqueness of the solution is proven. The coupling conditions are validated by means of quasi‐1D problems for which an explicit solution can be determined. For a more realistic scenario, a 2D application is considered where in a compressible single fluid, a hot gas bubble at low pressure collapses in a cold gas at high pressure near an adjacent structure.  相似文献   
2.
ABSTRACT

The authors present the results of an investigation in Fe–Ni-Cr austenitic alloys of the low-temperature deformation-induced segregations of nickel that form in the micro regions being (i) located close to grain- and subgrain boundaries and (ii) characteristic of the concentration and magnetic inhomogeneities indicated by the appearance of a dark diffraction contrast at the electron diffraction patterns taken from these regions typical (at the same time) of an enhanced value of Curie temperature. The observed effects were connected with the micro distortions caused by the local change of lattice parameter because of an increase in nickel concentration, as well as in the result of a magnetostriction dilatation. Using methods of the X-ray energy dispersive spectroscopy (XEDS) and atomic-probe body-section radiography (tomography – APT) has made it possible to determine the borders of those regions of austenite that were characteristic of an enhanced concentration of nickel in the fields of the localisation of a deformation-induced segregation of nickel in the vicinity of grain (subgrain) boundaries of austenitic alloys of the types Fe–13Cr–30Ni and Fe–37Ni–3Ti.  相似文献   
3.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
4.
对一个力学碰撞问题的讨论   总被引:2,自引:0,他引:2  
对普通物理力学中有关碰撞的一个问题,从恢复系数e的取值角度出发,进行了详细求解和讨论,得到了更完整的结果.  相似文献   
5.
通过重离子核反应与在束γ谱的实验技术, 对A=130缺中子核区的双奇核136La的高自旋态进行了研究, 所用核反应为130Te(11B,5n). 实验结果扩展了136La的能级纲图, 包括3个集体转动带, 最高自旋态达20h. 对于\uppi h_{11/2}\otimes \upnu h_{11/2}$~带, 观测到了旋称反转与集体回弯现象. 通过系统学比较, 对旋称反转特性进行了讨论. 由推转壳模型的计算指出, 此集体回弯是由一对中子的角动量顺排引起的. 另外两个集体带为具有~$\gamma\approx -60^\circ$~的扁椭形变带, 其可能的组态为: $\uppi h_{11/2}\otimes \upnu g_{7/2}h_{11/2}^2$~与~$\uppi g_{7/2}\otimes\upnu g_{7/2}^2 d_{5/2} h_{11/2}^2$.  相似文献   
6.
The numerical prediction of the fields of inelastic strains (the linear invariant of the tensor of inelastic strains) in thermoset polyester/marble filler composite plates is discussed. A uniformly distributed load is applied to the plates, which lie on a steel base. The strain fields are predicted by means of the boundary element method by using creep test data for the composites and the polyester matrix itself. Identical creep tests were performed for two ages of the materials (1 month and 13 years), which allowed evaluating the aging effect. The study is carried out in two stages. At the first stage, the application of the generalized Maxwell-Gurevich equation to the thermoset matrix/mineral filler composite is demonstrated. The model parameters determined from the experimental creep data is used for the second stage, where the state of inelastic strains in the plates is predicted by applying the boundary element method. The influence of composite formulation (filler content) and physical aging of the polyester matrix on the state of inelastic strains in the plates is shown.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 145–156, March–April, 2005.  相似文献   
7.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
8.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   
9.
The local and the terminal velocities, the size and the degree of bubbles’ shape deformations were determined as a function of distance from the position of the bubble formation (capillary orifice) in solutions of n-octyltrimethylammonium bromide, n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside and n-octanoic acid.

These surface-active compounds have different polar groups but an identical hydrocarbon chain (C8) in the molecule. The motion of the bubbles was monitored and recorded using a stroboscopic illumination, a CCD camera, and a JVC professional video. The recorded bubble images were analyzed by the image analysis software. The bubbles accelerated rapidly and their shape was deformed immediately after detachment from the capillary. The extent of the bubbles’ shape deformation (ratio of horizontal and vertical diameters) was 1.5 in distilled water and dropped rapidly down to a level of ca. 1.05–1.03 with increasing surfactant concentration. After the acceleration period the bubbles either attained a constant value of the terminal velocity (distilled water and high concentrations of the solutions), or a maximum in the velocity profiles was observed (low concentrations). The values of the terminal velocity diminished drastically with increasing concentration, from the value of 35 cm/s in water down to about 15 cm/s, while the bubble diameter decreased by ca. 10% only. The surfactant adsorption at the surface of the bubbles was evaluated and the minimum adsorption coverages required to immobilize the bubbles’ surface were determined. It was found that this minimum adsorption coverage was ca. 4% for n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside, n-octanoic acid and 25% for n-octyltrimethylammonium bromide. The difference in the adsorption coverage together with the surfactants’ surface activities indicate that it is mainly the adsorption kinetics of the surfactants that governs the fluidity of interfaces of the rising bubbles.  相似文献   

10.
The analysis of mechanical structures using the Finite Element Method in the framework of large elastoplastic strain, needs frequent remeshing of the deformed domain during computation. Indeed, the remeshing is due to the large geometrical distortion of finite elements and the adaptation to the physical behavior of the solution. This paper gives the necessary steps to remesh a mechanical structure during large elastoplastic deformations with damage. An important part of this process is constituted by geometrical and physical error estimates. The proposed method is integrated in a computational environment using the ABAQUS/Explicit solver and the BL2D-V2 adaptive mesher. To cite this article: H. Borouchaki et al., C. R. Mecanique 330 (2002) 709–716.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号