首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   281篇
  免费   12篇
  国内免费   1篇
化学   14篇
晶体学   22篇
力学   53篇
数学   7篇
物理学   198篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   9篇
  2018年   7篇
  2017年   4篇
  2016年   20篇
  2015年   16篇
  2014年   4篇
  2013年   81篇
  2012年   9篇
  2011年   5篇
  2010年   9篇
  2009年   9篇
  2008年   12篇
  2007年   16篇
  2006年   9篇
  2005年   8篇
  2004年   6篇
  2003年   8篇
  2002年   3篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   9篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有294条查询结果,搜索用时 0 毫秒
1.
2.
Y2BaCuO5 (211) inclusions are prominent microstructural features found in melt-textured YBa2Cu3Ox (123) superconductors. These particles are of interest because the 123/211 interfaces and the interface-associated defects have been proposed to be flux pinning centers. In addition, the 211 particles are believed to be heterogeneous nucleation centers of dislocation which can increase the critical current density of 123. Unfortunately, only limited studies have been performed on these particles to ascertain their roles in flux pinning. In this investigation, 211 particles, the interfacial structure and defects in undeformed and mechanically deformed melt-textured 123 have been studied by transmission electron microscopy. It was found that there appears to be a preferred orientation between large oblong 211 particles and the 123 matrix. In addition, while the 123/211 interfaces in undeformed 123 are sharp and relatively undistorted, the interfaces in deformed 123 samples are much thicker. Also, the distribution of strained regions and dislocations around oblong 211 particles in undeformed 123 is nonuniform; the interfaces of low surface curvature are relatively free of defects while the surfaces of high curvature are abundant in dislocations. In contrast, the 123/211 interfaces in deformed 123 samples contain high density of dislocations regardless of interface curvature.  相似文献   
3.
J. Li  J. Y. Zhang  P. Zhang  K. Wu  J. Sun 《哲学杂志》2016,96(29):3016-3040
Creep tests were performed on the high stacking fault energy (SFE) nanotwinned (NT) Ni free-standing foils with nearly the same twin thickness at room temperature (RT) to investigate the effects of grain size and loading rate on their microstructural stability and creep behaviour. The grain growth mediated by the twinning/detwinning mechanism at low applied stresses (<800 MPa) and grain refinement via the detwinning mechanism at high applied stresses (>800 MPa) were uncovered in the present NT-Ni foils during RT creep, both of which are attributed to the interactions between dislocations and boundaries. It appears that a higher initial dislocation density leads to a faster primary creep strain rate and a slower steady-state creep strain rate. Unlike the non-twinned metals in which grain growth often enhances the creep strain rate, the twinning/detwinning-mediated grain growth process unexpectedly lowers the steady-state creep strain rate, whereas the detwinning-mediated grain refinement process accelerates the creep strain rate in the studied NT-Ni foils. A modified phase-mixture model combined with Arrhenius laws is put forward to predict the scaling behaviour between the creep strain rate and the applied stress, which also predicts the transition from grain growth-reduced to grain refinement-enhanced steady-state creep strain rate at a critical applied stress. Our findings not only provide deeper insights into the grain size effect on the mechanical behaviour of nanostructured metals with high SFE, but also benefit the microstructure sensitive design of NT metallic materials.  相似文献   
4.
5.
G. Winther  C.S. Hong  X. Huang 《哲学杂志》2015,95(13):1471-1489
For the specific slip geometry of two sets of coplanar systems (a total of four systems) in fcc metals, the range of dislocation networks in boundaries aligned with one of the two active slip planes is predicted from the Frank equation for boundaries free of long-range elastic stresses. Detailed comparison with experimental data for eight dislocation boundaries in cold-rolled aluminium grains of the 45° ND rotated Cube orientation is conducted. It is concluded that the boundaries are Low-Energy Dislocation Structures, which are in good agreement with the Frank equation while also lowering the energy by dislocation reactions. Cross slip plays a role in the boundary formation process.  相似文献   
6.
7.
High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5?μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1?Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ~8?μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6?μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T?=?10–300?K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3?×?107 cm?2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300?nm, the extremely low surface roughness with the RMS value of 1.6–2.4?nm, measured by AFM, as well as rather high 3.5?μm-PL intensity at temperatures up to 300?K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.  相似文献   
8.
The morphologies and lattice structures of anthracene single crystals grown from the vapor phase were investigated using optical microscopy, phase contrast microscopy, atomic force microscopy (AFM), and X-ray diffraction analysis. Common morphologies with hexagonal large planes were observed irrespective of crystal size. The observation of certain surface morphologies with a phase contrast microscopy revealed that the spiral steps originated from screw dislocations present on the (0 0 1) planes. Moreover, the center and edge of the (0 0 1) planes had large curvatures, similar to hills. Resultantly, quarter-monolayer (ML) steps were observed on the large and flat planes between both hills.  相似文献   
9.
In quasicrystals, there are not only conventional, but also phason displacement fields and associated Burgers vectors. We have calculated approximate solutions for the elastic fields induced by two-, three- and fivefold straight screw- and edge-dislocations in infinite icosahedral quasicrystals by means of a generalized perturbation method. Starting from the solution for elastic isotropy in phonon and phason spaces, corrections of higher order reflect the two-, three- and fivefold symmetry of the elastic fields surrounding screw dislocations. The fields of special edge dislocations display characteristic symmetries also, which can be seen from the contributions of all orders. Received 21 February 2001 and Received in final form 27 June 2001  相似文献   
10.
室温300K下,由于AlxGa1-xN的带隙宽度可以从GaN的3.42eV到AlN的6.2eV之间变化,所以AlxGa1-xN是紫外光探测器和深紫外LED所必需的外延材料.高质量高铝组分AlxGa1-xN材料生长的一大困难就是AlxGa1-xN与常用的蓝宝石衬底之间大的晶格失配和热失配.因而采用MOCVD在GaN/蓝宝石上生长的AlxGa1-xN薄膜由于受张应力作用非常容易发生龟裂.GaN/AlxGa1-xN超晶格插入层技术是释放应力和减少AlxGa1-xN薄膜中缺陷的有效方法.研究了GaN/AlxGa1-xN超晶格插入层对GaN/蓝宝石上AlxGa1-xN外延薄膜应变状态和缺陷密度的影响.通过拉曼散射探测声子频率从而得到材料中的残余应力是一种简便常用的方法,AlxGa1-xN外延薄膜的应变状态可通过拉曼光谱测量得到.AlxGa1-xN外延薄膜的缺陷密度通过测量X射线衍射得到.对于具有相同阱垒厚度的超晶格,例如4nm/4nm,5nm/5nm,8nm/8nm的GaN/Al0.3Ga0.7N超晶格,研究发现随着超晶格周期厚度的增加AlxGa1-xN外延薄膜缺陷密度降低,AlxGa1-xN外延薄膜处于张应变状态,且5nm/5nmGaN/Al0.3Ga0.7N超晶格插入层AlxGa1-xN外延薄膜的张应变最小.在保持5nm阱宽不变的情况下,将垒宽增大到8nm,即十个周期的5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层使AlxGa1-xN外延层应变状态由张应变变为压应变.由X射线衍射结果计算了AlxGa1-xN外延薄膜的刃型位错和螺型位错密度,结果表明超晶格插入层对螺型位错和刃型位错都有一定的抑制效果.透射电镜图像表明超晶格插入层使位错发生合并、转向或是使位错终止,且5nm/8nmGaN/Al0.3Ga0.7N超晶格插入层导致AlxGa1-xN外延薄膜中的刃型位错倾斜30°左右,释放一部分压应变.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号