首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   46篇
  国内免费   29篇
化学   289篇
晶体学   2篇
力学   5篇
综合类   11篇
物理学   58篇
  2023年   10篇
  2022年   13篇
  2021年   11篇
  2020年   10篇
  2019年   12篇
  2018年   9篇
  2017年   20篇
  2016年   13篇
  2015年   14篇
  2014年   16篇
  2013年   31篇
  2012年   10篇
  2011年   10篇
  2010年   4篇
  2009年   18篇
  2008年   12篇
  2007年   10篇
  2006年   4篇
  2005年   12篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   12篇
  2000年   10篇
  1999年   10篇
  1998年   12篇
  1997年   8篇
  1996年   4篇
  1995年   8篇
  1994年   4篇
  1993年   11篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
排序方式: 共有365条查询结果,搜索用时 15 毫秒
1.
The viscosities of aqueous solutions of gelatin at different temperatures were carefully measured in a common glass‐capillary Ubbelohde viscometer at dilute to extremely dilute concentrations. The adsorption effect that occurred in the viscosity measurements was theoretically analyzed and discussed. A theory based on Langmuir isotherms could adequately describe the existing data. Some structural information was obtained by the use of an iterative fitting procedure to treat the reduced viscosity data, which disclosed that individual gelatin chains underwent a coil‐to‐helix transition as the solution cooled from 40 to 15 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1804–1812, 2006  相似文献   
2.
We report on our study of the interactions between coconut protein extracted from coconut meat and three hydrocolloids (gelatin, xanthan gum, and soybean polysaccharide) and their interfacial adsorption and emulsification properties. We used Zeta potential, fluorescence spectroscopy scanning and ITC to investigate the interactions between a fixed concentration (1%) of coconut protein and varying concentrations of hydrocolloid. Through the interfacial tension and interfacial viscoelasticity, the interfacial properties of the hydrocolloid and coconut protein composite solution were explored. The physical stability of the corresponding emulsion is predicted through microstructure and stability analysis. Xanthan gum forms a flocculent complex with coconut protein under acidic conditions. Soy polysaccharides specifically bind to coconut protein. Under acidic conditions, this complex is stabilized through the steric hindrance of soy polysaccharides. Due to gelatin-coconut protein interactions, the isoelectric point of this complex changes. The interfacial tension results show that as time increases, the interfacial tensions of the three composite solutions decrease. The increase in the concentration of xanthan gum makes the interfacial tension decrease first and then increase. The addition of soybean polysaccharides reduces the interfacial tension of coconut protein. The addition of xanthan gum forms a stronger elastic interface film. Emulsion characterization showed that the gelatin-added system showed better stability. However, the addition of xanthan gum caused stratification quickly, and the addition of soybean polysaccharides also led to instability because the addition of polysaccharides led to a decrease in thermodynamic compatibility. This research lays the foundation for future research into coconut milk production technology.  相似文献   
3.
Size dependency of the relaxation time T1 was measured for laser-polarized 129Xe gas encapsulated in different sized cavities made by glass bulbs or gelatin capsules. The use of laser-polarized gas enhances the sensitivity a great deal, making it possible to measure the longer 129Xe relaxation time in quite a short time. The size dependency is analyzed on the basis of the kinetic theory of gases and a relationship is derived in which the relaxation rate is connected with the square inverse of the diameter of the cavity. Such an analysis provides a novel parameter which denotes the wall effect on the relaxation rate when a gas molecule collides with the surface once in a second. The relaxation time of 129Xe gas is also dependent on the material which forms the cavity. This dependency is large and the relaxation study using polarized 129Xe gas is expected to offer important information about the state of the matter of the cavity wall.  相似文献   
4.
果冻内爆实验是一种研究柱形汇聚条件下Rayleigh-Taylor不稳定性的实验方法,由于高速摄影图像不能分辨反弹阶段果冻内界面的扰动,因此采用中低能X光照相CCD相机接收技术开展果冻与气体混合区域的实验研究,获得了果冻环在不同时刻压缩、反弹的发展状况及其内外边界,并观测到果冻质量分数降低时果冻与气体混合界面的变化。实验结果表明:X光照相可作为测量湍流混合区域的半定量测试技术,有助于研究果冻内爆中的气液界面Rayleigh-Taylor不稳定性现象。  相似文献   
5.
This study aims to optimize the formulation of composite films based on chicken skin gelatin with incorporation of rice starch (10–20%, w/w) and curcumin (0.03–0.10%, w/v). The effect of their interaction on film's tensile strength (TS), elongation at break (EAB), water vapor permeability (WVP) and antioxidant properties (DPPH%) were investigated using a response surface methodology-central composite design (RSM-CCD). The optimized film formulation was further validated to indicate the validity of the prediction model. The optimum conditions of the film were selected with incorporation of rice starch at 20% (w/w) and curcumin at 0.03% (w/v). The optimized film formulation has revealed better mechanical properties with low WVP value and good antioxidant activity. The results showed that optimized composite films formulation based on chicken skin gelatin with the incorporation of rice starch and curcumin has proving good validation of model prediction and can be effectively utilized in food packaging industry.  相似文献   
6.
The aim of this work was to evaluate the effect of the concentration of gelatin (G) (3–6 g), whey protein (W) (2.5–7.5 g) and chitosan (C) (0.5–2.5 g) on the physical, optical and mechanical properties of composite edible films (CEFs) using the response surface methodology (RSM), as well as optimizing the formulation for the packaging of foods. The results of the study were evaluated via first- and second-order multiple regression analysis to obtain the determination coefficient values with a good fit (R ˃ 0.90) for each of the response variables, except for the values of solubility and b*. The individual linear effect of the independent variables (the concentrations of gelatin, whey protein and chitosan) significantly affected (p ≤ 0.05) the water vapor permeability (WVP), strength and solubility of the edible films. The WVP of the edible films varied from 0.90 to 1.62 × 10−11 g.m/Pa.s.m2, the resistance to traction varied from 0.47 MPa to 3.03 MPa and the solubility varied from 51.06% to 87%. The optimized values indicated that the CEF prepared with a quantity of 4 g, 5 g and 3 g of gelatin, whey protein and chitosan, respectively, provided the CEF with a smooth, continuous and transparent surface, with L values that resulted in a light-yellow hue, a lower WVP, a maximum strength (resistance to traction) and a lower solubility. The results revealed that the optimized formulation of the CEF of G–W–C allowed a good validation of the prediction model and could be applied, in an effective manner, to the food packaging industry, which could help in mitigating the environmental issues associated with synthetic packaging materials.  相似文献   
7.
利用荧光猝灭法,研究了不同温度、酸度下,Cu2+和 Fe3+与明胶的相互作用.计算了猝灭常数和结合常数.紫外光谱和显微红外光谱的测定结果表明,Cu2+、Fe3+与明胶分子中的酰胺键发生了作用.探讨了猝灭机理.计算出的热力学函数表明,在Cu2+、Fe3+与明胶的相互作用过程中熵变起主要的作用.  相似文献   
8.
Side‐effects from allograft, limited bone stock, and site morbidity from autograft are the major challenges to traditional bone defect treatments. With the advance of tissue engineering, hydrogel injection therapy is introduced as an alternative treatment. Therapeutic drugs and growth factors can be carried by hydrogels and delivered to patients. Abaloparatide, as an analog of human recombinant parathyroid hormone protein (PTHrp) and an alternative to teriparatide, has been considered as a drug for treating postmenopausal osteoporosis since 2017. Since only limited cases of receiving abaloparatide with polymeric scaffolds have been reported, the effects of abaloparatide on pre‐osteoblast MC3T3‐E1 are investigated in this study. It is found that in vitro abaloparatide treatment can promote pre‐osteoblast MC3T3‐E1 cells’ viability, differentiation, and mineralization significantly. For the drug delivery system, 3D porous structure of the methacrylated gelatin (GelMA) hydrogel is found effective for prolonging the release of abaloparatide (more than 10 days). Therefore, injectable photo‐crosslinked GelMA hydrogel is used in this study to prolong the release of abaloparatide and to promote healing of defected bones in rats. Overall, data collected in this study show no contradiction and imply that Abaloparatide‐loaded GelMA hydrogel is effective in stimulating bone regeneration.  相似文献   
9.
利用紫外-可见吸收光谱(UV-Vis)和傅里叶变换红外光谱(FT-IR),研究了pH值11.00时,不同温度下CoS纳米粒子与明胶蛋白质的键合作用.根据吸光度与CoS浓度的关系,由Lineweave-Burk方程计算了不同温度下CoS纳米粒子与明胶蛋白作用的键合常数K(温度为293 K时键合常数K为3.01×103L/mol;温度为301 K时键合常数K为2.12×103L/mol;温度为313 K时键合常数K为1.85×103L/mol)以及对应温度下反应的热力学参数(ΔrHm=-17.93 kJ/mol;ΔrSm=4.93 J/(K.mol);ΔrGm=-19.37/-19.41/-19.47kJ/mol).CoS纳米粒子与明胶蛋白之间主要靠静电力结合.研究结果为初步探索纳米颗粒与纤维状蛋白质之间相互作用的化学机制提供了必要的信息.  相似文献   
10.
Gelatin, a denatured form of collagen, is an attractive biomaterial for biotechnology. In particular, gelatin particles have been noted due to their attractive properties as drug carriers. The drug release from gelatin particles can be easily controlled by the crosslinking degree of gelatin molecule, responding to the purpose of the research. The gelatin particles capable of drug release are effective in wound healing, drug screening models. For example, a sustained release of growth factors for tissue regeneration at the injured sites can heal a wound. In the case of the drug screening model, a tissue-like model composed of cells with high activity by the sustained release of drug or growth factor provides reliable results of drug effects. Gelatin particles are effective in drug delivery and the culture of spheroids or cell sheets because the particles prevent hypoxia-derived cell death. This review introduces recent research on gelatin microparticles-based strategies for regenerative therapy and drug screening models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号