首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   357篇
  免费   130篇
  国内免费   16篇
化学   98篇
晶体学   52篇
力学   59篇
综合类   5篇
数学   24篇
物理学   265篇
  2024年   1篇
  2023年   1篇
  2022年   10篇
  2021年   9篇
  2020年   7篇
  2019年   11篇
  2018年   10篇
  2017年   14篇
  2016年   20篇
  2015年   12篇
  2014年   24篇
  2013年   50篇
  2012年   29篇
  2011年   27篇
  2010年   27篇
  2009年   31篇
  2008年   25篇
  2007年   28篇
  2006年   19篇
  2005年   20篇
  2004年   25篇
  2003年   22篇
  2002年   11篇
  2001年   5篇
  2000年   17篇
  1999年   6篇
  1998年   2篇
  1997年   11篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1982年   3篇
排序方式: 共有503条查询结果,搜索用时 31 毫秒
1.
Multicrystalline silicon was grown by unidirectional solidification method using the accelerated crucible rotation technique. The application of the accelerated crucible rotation technique in unidirectional solidification method induced growth striations across the axial direction of the grown crystal. This striation pattern was observed from carbon concentration distribution, obtained by using Fourier transform infrared spectroscopy. The generated striation pattern was found to be weak and discontinuous. Some striations were absent, probably due to back melting, caused during each crucible rotation. From the growth striations and applied time period in crucible rotation, the growth rate was estimated by using Fourier transformation analysis.  相似文献   
2.
The growth mechanism of the peritectic η phase involving the peritectic reaction and peritectic transformation in Cu-70%Sn alloy was investigated under directional solidification. The results show that a major growth mechanism in thickening of the peritectic η-layer is not the peritectic reaction but the peritectic transformation. The transformation temperature and isothermal time play crucial roles in determining the volume fraction and the thickness of the peritectic η phase. With the increase of the temperature and isothermal time, the volume fraction of the peritectic η phase increases. The regressed data show that the relationship between the thickness of η phase (Δx) and the transformation temperature (T) meets the following equation In Δx=6.5−1673 1 / T. Additionally, there exists a relationship between the thickness of the η phase (Δx) and the isothermal time (t) at the 9 mm solidification distance below the peritectic reaction interface, Δx=0.72t 1/2, which is consistent with the theoretical model. Supported by the National Science Foundation of China (Grant No. 50395102)  相似文献   
3.
The specific heat and related thermophysical properties of liquid Fe77.5Cu13Mo9.5 monotectic alloy were investigated by an electromagnetic levitation drop calorimeter over a wide temperature range from 1482 to 1818 K. A maximum undercooling of 221 K (0.13 Tm) was achieved and the specific heat was determined as 44.71 J·mol-1·K-1. The excess specific heat, enthalpy change, entropy change and Gibbs free energy difference of this alloy were calculated on the basis of experimental results. It was found that the calculated results by traditional estimating methods can only describe the solidification process under low undercooling conditions. Only the experimental results can reflect the reality under high undercooling conditions. Meanwhile, the thermal diffusivity, thermal conductivity, and sound speed were derived from the present experimental results. Furthermore, the solidified microstructural morphology was examined, which consists of (Fe) and (Cu) phases. The calculated interface energy was applied to exploring the correlation between competitive nucleation and solidification microstructure within monotectic alloy.  相似文献   
4.
MicrostructureEvolutioninLaserRSCo-baseMetastableAlloyWANGAnan;CHENGShunqi;GUOZhiyao(KunmingUniversityofScienceandTechnology,...  相似文献   
5.
The dendrite growth process of transparent NaBi(WO4)2 with small prandtl and high melting point was studied by using the in-situ observation system. According to the dynamic images and detailed information, there are two kinds of restriction effect on the dendrite growth, the competition between arms and branches and the convection in the melt. The dendrite growth rate was time dependent, and the rate of arm growth reached the maximum 5.8 mm/s in the diffusive-advective region and rapidly decreased in the diffusive-convective region. The growth rate of branch had the same change trends as the arm’s. Based on the EPMA-EDS data of solidification structure of quenched NaBi(WO4)2 melt, it was found that there were component differences from stoichiometric concentration in the melt near the interface during the growth process. Supported by the National Natural Science Foundation of China (Grant No. 50331040) and the Innovation Funds from Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No. SCX0623)  相似文献   
6.
采用分子动力学模拟技术研究了金属间化合物AuCu3熔体的双体分布函数、键对、多面体、配位数等在快速凝固条件下随温度的变化情况,详细考察了AuCu3中微观组团随温度的演化特点.结果表明,AuCu3熔体降温至700 K时双体分布函数的第二峰已发生劈裂,液态金属中已经产生了非晶态;同时液体中的键对数及多面体数与温度的关系都表明,在上述向非晶转变的过程中,AuCu3熔体的确发生了微观结构组态的变化,其中以液体中的缺陷多面体随温度变化最为剧烈.  相似文献   
7.
往复挤压准晶增强快速凝固Mg92.5Zn6.4Y1.1合金   总被引:1,自引:0,他引:1  
采用往复挤压工艺将快速凝固Mg92.5Zn6.4Y1.1合金薄带在330℃挤压2道次和4道次,然后正挤压制成Φ10 mm的棒材。用OM,TEM,XRD及DTA研究了往复挤压过程中准晶相I-Mg3YZn6弥散析出及对力学性能的影响。研究表明,往复挤压有利于快速凝固Mg92.5Zn6.4Y1.1合金薄带的焊合,获得组织致密、均匀、高强韧合金。往复挤压2道次,相组成为-αMg和准晶I-Mg3YZn6,脱溶析出纳米准晶相较少;4道次相组成为-αMg和准晶I-Mg3YZn6及MgZn相,脱溶弥散析出的纳米I-Mg3YZn6准晶相及MgZn相较多。往复挤压提高材料的拉伸性能,其主要原因是细晶强化和析出强化。  相似文献   
8.
This paper describes some examples of the use of differential scanning calorimetry (DSC) in providing information for advanced solidification processing of metals and alloys. Spray forming, squeeze casting, grain refinement and crystallization of amorphous alloys are all discussed. DSC measurements are shown to be valuable for testing kinetic theories of nucleation and growth, and validating solidification process models.  相似文献   
9.
Development of highly functional cesium selective adsorbents for the decontamination of high-activity-level water(HALW) from the Fukushima NPP-1 accident is very urgent. In order to selectively adsorb the radioactive cesium, three kinds of novel porous silica gels loaded with insoluble ferrocyanides(SLFC) were prepared using a successive impregnation/precipitation method. Based on the results of previous research, the SLFC composites have relatively large uptake ratio above 95%, distribution coefficients(Kd) above 103 cm3/g, and excellent adsorption kinetics even in seawater. The solidification results also indicate that zeolites have an excellent Cs immobilization characteristic, gas-trapping and self-sintering abilities, and low leachability. We chose three kinds of SLFC composites to achieve the optimization of solidification by mixing with nine kinds of additives at high temperatures(up to 1200 °C). The Cs contents in the three composites were estimated to be below 30% of the initial contents and decreased with the three stages at calcination temperatures ranging from 25 to 1200 °C. By contrast, the Cs immobilization ratio was markedly lowered by mixing with additives: of those, allophane had the best immobilization result. By increasing the additive ratio to 50 wt%, the Cs immobilization ratio became almost 100% and no volatilization of Cs was detected even after calcination at 1200 °C. This result indicates that calcination of the mixture of SLFC composites after adsorbing Cs+ ions and specific additives under appropriate ratio is effective for stable solidification.  相似文献   
10.
何静  叶曦雯  汤志旭  牛增元  罗忻  邹立 《色谱》2020,38(6):679-686
建立了悬浮固化-分散液液微萃取结合液相色谱-串联质谱测定纺织废水中5种痕量磷系阻燃剂的方法。通过对萃取过程中萃取剂、分散剂的种类与体积、盐浓度、溶液pH值等对萃取效率的影响因素优化,确立了最佳萃取条件。采用了密度小于水的十一烷醇(400 μL)为萃取剂,甲醇(300 μL)为分散剂,控制溶液pH值在6~9之间,NaCl添加量为2 g,萃取时间为涡旋2 min。在优化的萃取条件下,该方法在2~100 μg/L均有良好的线性关系,相关系数大于0.995,除二(2,3-二溴丙基)磷酸酯(BIS)的检出限为5 μg/L外,三(2-氯乙基)磷酸酯(TCEP)、三(1,3-二氯-异丙基)磷酸酯(TDCP)、三(1-氮丙啶基)氧化膦(TEPA)和三(2,3-二溴丙基)磷酸酯(TRIS)的检出限均为2 μg/L。后整理、染色和印花等实际废水样品加标试验表明,方法的平均回收率为71.6%~114.5%,RSD为2.7%~11.2%(n=6)。对11个样品进行检测,其中3个废水样品检出TCEP与TDCP化合物,含量为2.6~3.4 μg/L。本方法简单,快速,灵敏度好且环保绿色,能够对纺织废水中的5种痕量磷系阻燃剂进行准确的定性与定量检测。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号