首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
物理学   5篇
  2022年   3篇
  2016年   1篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Dong Yan 《中国物理 B》2022,31(3):37406-037406
The relationship between charge-density-wave (CDW) and superconductivity (SC), two vital physical phases in condensed matter physics, has always been the focus of scientists' research over the past decades. Motivated by this research hotspot, we systematically studied the physical properties of the layered telluride chalcogenide superconductors CuIr$_{2-x}$Al$_{x}$Te$_{4}$ ($0 \leqslant x \leqslant 0.2$). Through the resistance and magnetization measurements, we found that the CDW order was destroyed by a small amount of Al doping. Meanwhile, the superconducting transition temperature ($T_{\rm c}$) kept changing with the change of doping amount and rose towards the maximum value of 2.75 K when $x=0.075$. The value of normalized specific heat jump ($\Delta C/\gamma T_{\rm c}$) for the highest $T_{\rm c}$ sample CuIr$_{1.925}$Al$_{0.075}$Te$_{4}$ was 1.53, which was larger than the BCS value of 1.43 and showed the bulk superconducting nature. In order to clearly show the relationship between SC and CDW states, we propose a phase diagram of $T_{\rm c}$ vs. doping content.  相似文献   
2.
It was found that selenium doping can suppress the charge-density-wave(CDW) order and induce bulk superconductivity in ZrTe_3. The observed superconducting dome suggests the existence of a CDW quantum critical point(QCP) in ZrTe_3-xSex near x ≈ 0.04. To elucidate the superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe_(3-x)Se_x single crystals(x = 0.044 and 0.051) down to 80 m K. For both samples, the residual linear term κ_0/T at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of κ_0/T manifests a multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe_(3-x)Se_x,which indicates conventional superconductivity despite of the existence of a CDW QCP.  相似文献   
3.
We report 121Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV3Sb5 with Tc=2.5 K.121Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a commensurate CDW state.The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first order phase transition.The CDW order exhibits tri-hexagonal deformation with a lateral shift between the adjacent kagome layers,which is consistent with 2×2×2 superlattice modulation.The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state.  相似文献   
4.
Transmission electron microscopy(TEM) study of SrPt2As2 reveals two incommensurate modulations appearing in the charge-density-wave(CDW) state below TCDW≈ 470 K. These two structural modulations can be well explained in terms of condensations of two-coupled phonon modes with wave vectors of q1= 0.62a*on the a*–b*plane and q2=0.23a*on the a*–c*plane. The atomic displacements occur along the b-axis direction for q1and along the c-axis direction for q2, respectively. Moreover, the correlation between q1and q2can be generally written as q1=(q2+ a*)/2 in the CDW state, suggesting the presence of essential coupling between q1and q2. A small fraction of Ir doping on the Pt site in Sr(Pt1-xIrx)2As2(x ≤ 0.06) could moderately change these CDW modulations and also affect their superconductivities.  相似文献   
5.
Controlling the anomalous Hall effect(AHE)inspires potential applications of quantum materials in the next generation of electronics.The recently discovered quasi-2D kagome superconductor CsV3Sb5 exhibits large AHE accompanying with the charge-density-wave(CDW)order which provides us an ideal platform to study the interplay among nontrivial band topology,CDW,and unconventional superconductivity.Here,we systematically investigated the pressure effect of the AHE in CsV3Sb5.Our high-pressure transport measurements confirm the concurrence of AHE and CDW in the compressed CsV3Sb5.Remarkably,distinct from the negative AHE at ambient pressure,a positive anomalous Hall resistivity sets in below 35 K with pressure around 0.75 GPa,which can be attributed to the Fermi surface reconstruction and/or Fermi energy shift in the new CDW phase under pressure.Our work indicates that the anomalous Hall effect in CsV3Sb5 is tunable and highly related to the band structure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号