首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
晶体学   4篇
力学   1篇
物理学   13篇
  2010年   3篇
  2009年   10篇
  2008年   4篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
The stable adsorption sites for both Ga and N ions on the ideal and on the reconstructed LiNbO3 (0 0 0 1) surface are determined by means of first-principle total energy calculations. A single N layer is found to be more strongly bound to the substrate than a single Ga layer. The adsorption of a GaN monolayer on the polar substrate within different orientations is then modeled. On the basis of our results, we propose a microscopic model for the GaN/LiNbO3 interface. The GaN and LiNbO3 (0 0 0 1) planes are parallel, but rotated by 30° each other, with in-plane epitaxial relationship [1 0 0]GaN‖ [1 1  0]LiNbO3. In this way the (0 0 0 1) plane lattice mismatch between GaN and LiNbO3 is minimal and equal to 6.9% of the GaN lattice constant. The adsorbed GaN and the underlying LiNbO3 substrate have parallel c-axes.  相似文献   
2.
The growth of CdTe on (0001) and (10 0) surfaces of CdS was studied using low energy electron diffraction and photoelectron spectroscopy. The results indicate oriented growth of the CdTe films with a faster nucleation of CdTe on CdS(0001), explaining the preferred (111) orientation of CdTe films on polycrystalline substrates. The faster nucleation on the (0001) surface is attributed to the formation of a stable CdS(0001):Te surface termination, which is identified from surface sensitive Te 4d spectra and a 2√3 × 2√3 surface reconstruction. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
3.
In this paper, we summarize the results on the surfactant-mediated epitaxy (SME) of germanium on (0 0 1) and (1 1 1) silicon substrates. Then, we discuss, how the surfactant-controlled development of micro-facets determines the strain relaxation process. We place particular emphasis on the different types of strain-compensating dislocation networks that form at the Ge/Si(0 0 1) interface in epitaxy with and without Sb as a surfactant. At elevated temperatures, high Sb-coverage promotes the generation of a regular array of edge type misfit dislocations, which allows for abrupt instead of gradual strain relaxation in the initial stage of growth.  相似文献   
4.
Atomic force microscopy (AFM) is used to examine chemical–mechanical processes on Si(100) surfaces. The AFM tip serves as a single asperity contact to exert tribological forces as well as an imaging tool. By scanning in chemically aggressive solutions, material removal can be observed directly. In the silicon system, high-force scans are used to remove oxide and initiate etching in selected locations, followed by low-force scans to image the resulting surfaces. Material removal rates were measured as a function of applied load, number of scans, solution composition, and time. In basic solution, places where the underlying silicon is exposed etch rapidly, producing structures 100 nm or less in size. Although the surface roughness initially increases during etching, the final surfaces are smooth. The oxide is extremely sensitive to applied stress: even very light scanning accelerates oxide dissolution. Once the oxide is removed, chemical etching proceeds through the underlying silicon with or without AFM scanning; but the silicon etches more rapidly if AFM scanning is continued, due to true chemical–mechanical (tribochemical) effects.  相似文献   
5.
NiSe2 tubular microcrystals assembled of nanoparticles have been prepared via a hydrothermal method in an ethanolamine and water mixed solution assisted by polyvinyl alcohol (PVA). The prepared tubular crystals with hexagonal structure are composed of nanoparticles with average diameter of 30 nm. It was found that the phase of the products could be adjusted by the molar ratio of the reactants (Ni/Se), and the morphology of the products could be greatly influenced by the quantity of surfactant PVA. Based on the experimental results, the possible formation mechanism of NiSe2 tubular microcrystals is also discussed.  相似文献   
6.
GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.  相似文献   
7.
Cu-Zn/ZnO nanocomposites with a novel core-shell structure have been prepared by a surface precipitation process in aqueous solution. X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy are employed to analyze the structure and morphology of the present products. The influence of the annealing temperature on the core-shell structure of the nanocomposites is investigated, and a possible growth model is proposed. Furthermore, the gas sensors based on the Cu-Zn/ZnO nanocomposites are fabricated and tested, which exhibits high sensitivity and fast response to CO. The best results are obtained for the sensor based on the film annealed at 350 °C, which shows that the sensitivity is about 6.3 when the sensor is exposed to 100 ppm CO at the operating temperature of 240 °C. The possible sensing mechanism of the Cu-Zn/ZnO sensing film has also been discussed.  相似文献   
8.
Highly c-axis orientated ZnO was grown by metal organic chemical vapor deposition (MOCVD) using NO as both oxidant and nitrogen dopant source. The properties of the deposited material are investigated by X-ray diffraction to study the crystalline quality of the thin films. Photoluminescence measurements are used to determine the optical properties of the material as a function of VI/II ratio and post growth-annealing temperature. Two transitions appear at 3.228 and 3.156 eV and are interpreted as involving active nitrogen acceptors. An increase in the NO flow increases the concentration of nitrogen in the films, which are activated by subsequent annealing at 600 °C in an oxygen ambient.  相似文献   
9.
Nanocrystalline silicon material has made rapid progress in the last several years and at present it can be defined as real device quality as a photoactive layer for solar cells. A number of innovative ideas, such as the deposition at the crystalline to amorphous transition, at high pressure depletion condition, by taming of the ion energy, by grading of the material growth, at reduced unwanted dopant incorporation, have helped to reach an efficiency of 10% for single junction nanocrystalline silicon cells. In situ plasma and gas phase diagnosis have contributed to the fast optimisation of deposition process parameters. Deposition rate, open circuit voltage and light confinement are some of most critical issues that are currently pursued. Materials with a defect density as low as 1015 cm−3 have been made, however, they are still not good enough for n–p junctions; the device structure is still of drift type in a p–i–n or n–i–p configuration.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号