首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   7篇
  国内免费   10篇
化学   45篇
物理学   8篇
  2024年   1篇
  2023年   8篇
  2022年   6篇
  2021年   10篇
  2020年   14篇
  2019年   6篇
  2018年   7篇
  2017年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
《中国化学快报》2020,31(4):922-930
MXenes have emerged as versatile 2D materials that are already gaining paramount attention in the areas of energy,catalyst,electromagnetic shielding,and sensors.The unique surface chemistry,graphene-like mo rphology,high hydrophilicity,metal-like conductivity with redox capability identifies MXenes,as an ideal material for surface-related applications.This short review summarizes the most recent reports that discuss the potential application of MXenes and their hybrids as a transducer material for advanced sensors.Based on the nature of transducing signals,the discussion is categorized into three sections,which include electrochemical(bio) sensors,gas sensors,and finally,electro-chemiluminescence fluorescent sensors.The review provides a concise summary of all the analytical merits obtained subsequent to the use of MXenes,followed by endeavors that have been made to accentuate the future perspective of MXenes in sensor devices.  相似文献   
2.
在电子信息和物联网技术的推动下,人类对可穿戴电子器件和智能织物的需求愈发突出,功能纤维作为智能可穿戴设备的重要载体,近年来获得快速发展。功能纤维的性能很大程度上取决于纤维的基础构筑单元。过渡金属碳/氮化物(MXenes)作为一种新兴的二维材料,凭借其高电导率、优异的可加工性能、可调节的表面特性以及出色的机械强度等优点,受到了极大的关注,也逐渐成为构筑功能纤维的重要单元。本文将主要综述MXenes的湿化学、熔融盐、无氟试剂刻蚀等方法和力学、电学、光学和化学稳定性等性能,阐述基于该材料制备的功能纤维在传感、储能以及其他智能领域的应用,最后讨论了基于MXenes材料的功能纤维的未来应用前景和技术挑战。  相似文献   
3.
Ti3C2TX MXene was synthesized by exfoliating pristine Ti3AlC2 phase with hydrofluoric acid. The simple methods of mechanical mixing and drop-casting of Ti3C2TX and MWCNTs were carried out to prepare sensing electrode of Ti3C2TX/MWCNTs/GCE. The composite and topography, especially the surface functional groups of Ti3C2TX/MWCNTs were analyzed by XRD, SEM, FTIR, XPS, and Raman spectrum. The results turned out that Ti3C2TX was characteristic by accordion-like 2D nanostructure with the surfaces terminated with −OH, −F, and =O. When combining with acid pretreated, the interaction between the functional groups of Ti3C2TX and MWCNTs facilitated the convenience and reproducibility of the robust modified electrodes and could make Ti3C2TX/MWCNTs/GCE possess good synergistic catalytic acceleration by increasing the electron transfer efficiency as well as adsorption and aggregation of MOP analyte onto the electrode surface. Versatile electrochemical measurements of CV, DPV and EIS were used to investigate the electrochemical performance of Ti3C2TX/MWCNTs/GCE sensing platform. The linear detection range is 0.01–100 μM with the limit of detection of 0.0092 μM (S/N=3). The sensor has good stability, repeatability, reproducibility and anti-interference. In the detection of serum and urine samples, it has a good recovery rate.  相似文献   
4.
康淳  林延欣  景远聚  王新波 《化学进展》2022,34(10):2239-2253
MXenes是一类新型的二维过渡金属碳/氮化物或碳氮化物,是由Mn+1AXn相物质(MAX相)通过剥离而得到的单层或薄层纳米片。独特的二维层状结构、较大的比表面积以及出色的导电性、机械稳定性和磁性等性能,使MXenes迅速成为研究热点,并已广泛应用于储能、催化、吸附等众多领域。本文总结介绍了二维材料MXenes的制备方法,并重点综述其近年来在环境领域的应用研究进展,如吸附重金属、吸附放射性金属、吸附有机物、二氧化碳的选择性吸附、光催化、电催化、膜分离、传感器、生物活性、电磁吸收与屏蔽等进行了总结与回顾,最后对现阶段存在的问题和未来发展进行了分析。  相似文献   
5.
赵文军  秦疆洲  尹志凡  胡霞  刘宝军 《化学进展》2019,31(12):1729-1736
MXenes是一类新型的二维(2D)过渡金属碳化物、氮化物或碳氮化物的总称,在物理、化学、材料科学和纳米技术领域产生了巨大的影响。MXenes材料在制备过程中,表面会生成羟基、氟等基团,表面具有亲水性和良好的可见光响应,加上其自身具有比表面积大、活性位点丰富等优点,使其成为一种新兴的光催化材料。本文主要对MXenes及其复合材料在光催化领域的最新研究进展进行总结,简要介绍了MXenes材料的合成方法及理化性质,着重介绍了MXenes及其复合材料作为光催化剂的复合方式,光催化机理等方面的内容,并逐一列举其在光催化氧化与还原反应中的重要作用,最后对MXenes及其复合物的进一步研究提出建议和展望。  相似文献   
6.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   
7.
Novel nanomaterials and advanced nanotechnology continuously push forward the rapid development of sustainable energy conversion and storage equipment. An emerging family of two-dimensional transition-metal carbides, nitrides and carbonitrides, also known as MXenes, have attracted increasing attention and in depth investigation. Benefitting from their unique intrinsic properties, MXenes have attracted significant attention and they have been considered as promising candidate materials for the development of environmentally friendly energy resources. A large number of studies show that MXenes have great potential in energy conversion and storage fields. Despite of their exceptional properties, MXenes also have some inherent characteristics, such as low capacities and unstable retention performances, which severely hinder their prospect applications in energy conversion and storage fields. In this Minireview, the latest progress on MXenes and their hybrid composites with small molecules, polymers, carbon or metal ions, and their applications in energy conversion and storage fields is highlighted, including their use in different types of batteries, supercapacitors, hydrogen/oxygen evolution reactions, electromagnetic interference absorption/shielding and solar steam generation. In addition, the critical challenges and further development prospects of MXene-based materials are also introduced.  相似文献   
8.
The optimization of three-dimensional (3D) MXene-based electrodes with desired electrochemical performances is highly demanded. Here, a precursor-guided strategy is reported for fabricating the 3D SnS/MXene architecture with tiny SnS nanocrystals (≈5 nm in size) covalently decorated on the wrinkled Ti3C2Tx nanosheets through Ti−S bonds (denoted as SnS/Ti3C2Tx-O). The formation of Ti−S bonds between SnS and Ti3C2Tx was confirmed by extended X-ray absorption fine structure (EXAFS). Rather than bulky SnS plates decorated on Ti3C2Tx (SnS/Ti3C2Tx-H) by one-step hydrothermal sulfidation followed by post annealing, this SnS/Ti3C2Tx-O presents size-dependent structural and dynamic properties. The as-formed 3D hierarchical structure can provide short ion-diffusion pathways and electron transport distances because of the more accessible surface sites. In addition, benefiting from the tiny SnS nanocrystals that can effectively improve Na+ diffusion and suppress structural variation upon charge/discharge processes, the as-obtained SnS/Ti3C2Tx-O can generate pseudocapacitance-dominated storage behavior enabled by engineered surface reactions. As predicted, this electrode exhibits an enhanced Na storage capacity of 565 mAh g−1 at 0.1 A g−1 after 75 cycles, outperforming SnS/Ti3C2Tx-H (336 mAh g−1), SnS (212 mAh g−1), and Ti3C2Tx (104 mAh g−1) electrodes.  相似文献   
9.
Two-dimensional metal–organic frameworks (2D MOFs) can be used as the cathodes for high-performance zinc-ion battery due to their large one-dimensional channels. However, the conventionally poor electrical conductivity and low structural stability hinder their advances. Herein, we report an alternately stacked MOF/MX heterostructure, exhibiting the 2D sandwich-like structure with abundant active sites, improved electrical conductivity and exceptional structural stability. Ex situ characterizations and theoretical calculations reveal a reversible intercalation mechanism of zinc ions and high electrical conductivity in the 2D heterostructure. Electrochemical tests confirm excellent Zn2+ migration kinetics and ideal pseudocapacitive behaviors. As a consequence, Cu-HHTP/MX shows a superior rate performance (260.1 mAh g−1 at 0.1 A g−1 and 173.1 mAh g−1 at 4 A g−1) and long-term cycling stability of 92.5 % capacity retention over 1000 cycles at 4 A g−1.  相似文献   
10.
Lamellar membranes show exceptional molecular permeation properties of key importance for many applications. However, their design and development need the construction of regular and straight interlayer channels and the establishment of corresponding transport rate equation. The fabrication of a uniformly lamellar membrane is reported using double‐layered Ti3C2Tx MXenes as rigid building blocks. This membrane possesses ordered and straight 2 nm channels formed via a direct self‐stacking, in contrast to the conventional irregular ones from flexible sheets. Such channels permit precise molecular rejection and unparalleled molecular permeation. The permeance of water and organics by this membrane reached 2300 and 5000 L m?2 h?1 bar?1, respectively. The molecular transfer mechanism in confined nanochannels, and the corresponding model equation are established, paving a way to nanoscale design of highly efficient channeled membranes for transport and separation applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号