首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
化学   3篇
晶体学   1篇
力学   51篇
数学   3篇
物理学   8篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2013年   2篇
  2011年   7篇
  2009年   3篇
  2007年   7篇
  2006年   9篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
This study has presented a performance investigation of an advanced tracked prime mover for the operation of agricultural goods and other operations on peat terrain. The maximum and continuous traction torque of the prime mover has been developed by designing an advanced controller for controlling the intelligent system. The prime mover’s mobility is studied with ultrasonic displacement sensor, torque transducer, National Instrument cRIO-9004 Compact-RIO Real-time Controller Unit (RCU), a National Instrument TPC 2106T Touch Panel Control (TPC), a Trimble AG132 GPS antenna and receiver unit, and a Dlink DIR-655 router. The fuzzy logic controller (FLC) has been equipped with the prime mover hydraulic system to increase the traction torque of the hydraulic motor when the prime mover’s sinkage is more than or equal to 70 mm. The prime mover’s design demonstrates good potential in traversing peat terrain as the measured tractive effort was found to be 48% of the vehicle’s gross weight while the recommended tractive effort is in the range of 30–36% of the vehicle’s gross weight.  相似文献   
2.
Driving on ice is still a risky activity. Research has investigated the factors contributing to the friction mechanism and has reported experimental studies of pneumatic tyres on ice in order to develop models that predict tractive and braking performance on ice/snow. Therefore, developing testing methods to obtain relevant experimental data for the validation of models is equally important.There are agricultural and industrial vehicles which are also designed for pulling but there are no specific studies reporting experimental tests on traction force of such machines in snowy conditions. However, this issue is very topical, as demonstrated by the appearance on the market of winter tyres for such vehicles.This study presents a method for testing winter tyres in outdoor test facilities with a focus on traction performance. The conclusions will serve in future investigations as a concise knowledge source to develop improved testing facilities and tyre–ice interaction models, aiding the development of better tyre designs and improved vehicle safety systems.The functional tests hereafter described have been carried out with the aim of evaluating the possibility of measuring the influences of different technique solutions on the performance of certain 17.5 R25 sized industrial tyres.  相似文献   
3.
Icy road conditions and tire operational parameters play a vital role in determining the overall performance of a vehicle. This study builds on prior work in the researchers’ group. The Advanced Tire-Ice Interface Model (ATIIM) simulates the temperature rise in the contact patch based on the measured pressure distribution and the thermal properties of the tread compound and of the ice surface. It has the capability to simulate the height of the thin water film created from the melted ice, to predict the tractive performance, and to estimate the viscous friction due to the water layer and the influence of braking operations, including the locked wheel condition. The experimental investigation included measuring the bulk temperature distribution in the contact patch to validate the temperature rise simulations of the ATIIM. As shown by the simulations and the test data, a rise in temperature was observed from the leading edge to the trailing edge of the contact patch. As the wheel load increases, the difference in temperature rise increases, as also reflected in the experimental study. When the temperature difference was significant, a thin water film was observed that resulted in a reduction of friction, which was simulated using the ATIIM.  相似文献   
4.
In this paper, the hinged road-mat construction is modeled as a cable structure, and based on the equivalent cable theory the sinkage of the roadway is evaluated. Neglecting details of the interaction between tires and road mats, works caused by the traction, resistance, and drawbar pulling are defined to build a new work criterion to evaluate the mobility of vehicles on the hinged road mats. Mobility diagrams, related to coefficient of adhesion, terrain deformation, beam width, and fastening force, are developed to evaluate the locomotion of vehicles and further guide the design of hinged road mats. The presented method compares well with the field terramechanical experiments of the hinged road mats, thus verifying the validity of equivalent cable modeling and work criterion for hinged road mats.  相似文献   
5.
We present in this paper a numerical scheme for incompressible Navier–Stokes equations with open and traction boundary conditions, in the framework of pressure-correction methods. A new way to enforce this type of boundary condition is proposed and provides higher pressure and velocity convergence rates in space and time than found in the present state of the art. We illustrate this result by computing some numerical and physical tests. In particular, we establish reference solutions of a laminar flow in a geometry where a bifurcation takes place and of the unsteady flow around a square cylinder.  相似文献   
6.
Mathematical models capable of describing the interaction between traction devices and soils have been effective in predicting the performance of off-road vehicles. Such a model capable of predicting the performance of bias-ply tires in agricultural soils was first developed by Brixius [Brixius WW. Traction prediction equations for bias-ply tires. ASAE Paper No. 871622. St. Joseph, MI: ASAE; 1987]. When the soil and vehicle parameters are known, this model uses an iterative procedure to predict the tractive performance of a vehicle including pull, tractive efficiency, and motion resistance. Al-Hamad et al. [Al-Hamad SA, Grisso RD, Zoz FM, Von Bargen K. Tractor performance spreadsheet for radial tires. Comput Electron Agr 1994:10(1):45–62] modified the Brixius equations to predict the performance of radial tires. Zoz and Grisso [Zoz, FM, Grisso RD. Traction and tractor performance. ASAE Distinguished Lecture Series #27. St. Joseph, MI: ASAE; 2003] have demonstrated that the use of spreadsheet templates is more efficient than the original iterative procedure used to predict the performance of 2WD and 4WD/MFWD tractors. As tractors equipped with rubber-tracks are becoming popular, it is important that we have the capability to predict the performance for off-road vehicles equipped with rubber-tracks during agricultural operations. This paper discusses the development of an empirical model to accomplish this goal and its validity by comparing the predicted results with published experimental results.  相似文献   
7.
The traction properties of agricultural tires are of special importance because the tractive efficiency varies in a wide range to a maximum in the order of 75%. Different single wheel testing equipment is used to investigate tire performance and different mathematical methods are used to process the measured data. The different zero-slip definitions complicate a comparison between the measured data. In the paper the consequences of these differences are shown. For traction prediction it is necessary to make different measured and calculated data comparable so that all these data can be used for modelling tire behaviour. Therefore in this paper an effort to standardize tire traction performance is made.  相似文献   
8.
Planetary rovers are typically developed for high-risk missions. Locomotion requires traction to provide forward thrust on the ground. In soft soils, traction is limited by the mechanical properties of the soil, therefore lack of traction and wheel slippage cause difficulties during the operation of the rover. A possible solution to increase the traction force is to increase the size of the wheel-ground contact area. Flexible wheels provide this due to the deformation of the loaded wheel and hence this decreases the ground pressure on the soil surface. This study focuses on development of an analytical model which is an extension to the Bekker theory to predict the tractive performance for a metal flexible wheel by using the geometric model of the wheel in deformation. We demonstrate that the new analytical model closely matches experimental results. Hence this model can be used in the design of robust and optimal traction control algorithms for planetary rovers and for the design and the optimisation of flexible wheels.  相似文献   
9.
分析了当前智能变电站SV点对点发送处理机制,提出了一种满足过程层要求的高均匀性和一致性SV直采传输方法。应用FPGA实现DMA控制器和以太网MAC控制单元,对SV报文添加发送描述符,由FPGA根据描述符直接控制SV发送。采用Spartan-6系列架构FPGA,通过PCI Express总线,系统内部实现SV数据高速传输。此方案充分利用了FPGA的并行数据处理的特性及丰富的IP资源,设计实现了多路以太网点对点数据的高带宽和高可靠性传输,极大的提升了智能变电站系统的性能。  相似文献   
10.
Soil impacts on vehicle mobility are well known; however, most data are for bare soil or the type and amount of vegetation is not documented. This study summarizes results from experiments to quantify the effect of above ground and below ground vegetation biomass on vehicle performance. Soil–vegetation combinations of three soils and three grasses were used. The vegetation was tested at various growth stages and was also subjected to stressors such as trafficking, burning, and cutting. Vegetation measurements included above ground (leaves and shoots) and below ground (root) biomass weights, lengths, diameters and surface area parameters. The soils were characterized for size distribution, moisture, density and terrain strength for each test condition. Vehicle traction and motion resistance were measured for each soil–grass combination using the CRREL Instrumented Vehicle. Results showed an increase in net traction biomass in sandy soils. For clay soils above ground biomass generally increased resistance while increased root diameter clearly decreased resistance. This study represents the first measurements quantifying the impacts of specific biomass parameters on vehicle mobility. The results will serve to guide new experimental methods, improve datasets, and develop physics-based models for years to come.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号