首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   1篇
  国内免费   1篇
化学   89篇
力学   1篇
数学   3篇
物理学   15篇
  2023年   6篇
  2022年   5篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   5篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   7篇
  2011年   4篇
  2010年   2篇
  2009年   4篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   11篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
This study was aimed at the development of a conductometric biosensor based on acetylcholinesterase considering the feasibility of its application for the inhibitory analysis of various toxicants. In this paper, the optimum conditions for enzyme immobilization on the transducer surface are selected as well as the optimum concentration of substrate for inhibitory analysis. Sensitivity of the developed biosensor to different classes of toxic compounds (organophosphorus pesticides, heavy metal ions, surfactants, aflatoxin, glycoalkaloids) was tested. It is shown that the developed biosensor can be successfully used for the analysis of pesticides and mycotoxins, as well as for determination of total toxicity of the samples. A new method of biosensor analysis of toxic substances of different classes in complex multicomponent aqueous samples is proposed.  相似文献   
2.
It is of a great challenge to develop semiconductor photocatalysts with potential possibilities to simultaneously enhance photocatalytic efficiency and inhibit generation of toxic intermediates.In this study,we developed a facile method to induce the La doping and cationic vacancie(V(Zn))on ZnO for the highly efficient complete NO oxidation.The photocatalytic NO removal efficiency increases from 36.2%to 53,6%.Most importantly,a significant suppressed NO2 production also has been realized.According to the DFT calculations,ESR spectra and in situ FTIR spectra,the introduction of La^3+induce the redistribution of charge carriers in La-ZnO,which promote the production of·O2^- and lead to the formation of V(Zn)for the formation of·OH,contributing to the complete oxidation of NO to nitrate.Besides,the conversion pathway of photocatalytic NO oxidation has been elaborated,This work paves a new way to simultaneously realize the photocatalytic pollutants removal and the inhibition of toxic intermediates generation for efficient and safe air purification.  相似文献   
3.
为探讨Ge-132的毒副反应,对服用Ge-132的肺癌患者3083例进行长期观察。结果发现各项观察指标,治疗组与对照组均无明显差异,可认为在合理剂量下,临床长期应用Ge-132是安全的。  相似文献   
4.
Poly(p-chloromethylstyrene-ethyleneglycoldimethacrylate) polymeric microbeads, poly(p-CMS-EGDMA), were synthesized and 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (S4HD) was attached chemically onto the polymeric microbeads. Characterization of all microbeads was done by Fourier transform-infrared spectrometry (FT-IR) and elemental analyzer. The amount of attached 1,5,9,13-tetrathiacyclohexadecane-3,11-diol to the polymer was found to be 2.23 mmol g−1 polymers. The ligand attached microbeads, poly(p-CMS-EGDMA-S4HD), were used to examine the adsorption capacity of Pb(II), Cd(II), Hg(II) and Cr(II) ions for recovery, pre-concentration and the matrix elimination by changing the pH and the initial metal ion concentrations and also adsorption kinetics of the studied metal ions was determined. Pre-concentration factors for the studied toxic metal ions were found to be more than 500-fold and recovery was between 92 and 106%. In the drinking, lake, tap and sea-water samples from water lands, ultra-trace toxic metal ion concentrations were determined easily by using ligand modified microbeads after pre-concentration because of the high pre-concentration factor and easily matrix elimination using ligand modified microbeads. Reference sea-water material was used for the validation of the method and it was found that recovery, pre-concentration and the matrix elimination were performed perfectly. For the desorption of the toxic metal ions, 3 M HCl containing 0.8 M thiourea was used and desorption ratio was obtained more than 96%.  相似文献   
5.
The elucidation of structures of glutathione (GSH) complexes play an important role in the fundamental understanding of biochemical pathways of metal ion deactivation in plants. This article attempts to feature key studies for stoichiometry of metal complexes with glutathione and its constituent amino acids to obtain a better understanding of the different metal affinities of the complexation sites of glutathione. The SEC-ICP-MS experiments have indicated that oxidation process of glutathione was accelerated by metal ion presence in following order Cu+, Pb2+ and Cd2+. The redox activity of metal ions was confirmed by ESI-MS experiments, which allowed to observe formation of glutathione disulphide (GSSG) in time. The stoichiometry of Cd2+, Cu+ and Pb2+ complexes with GSH was defined by observing the isotope pattern of investigated metals and hydrogen loss or transfer during binding. The complexes with metal bound to sulphur of 1:1 and 1:2 stoichiometry were found in case of cadmium and lead. The number of hydrogen atoms lost during metal binding and the SEC-ESI-MS results allowed to elucidate that copper is bound by GSSG in ratio 1:1 and 1:2. Additionally, size exclusion chromatography coupled to electrospray MS allowed to differentiate more stable complexes from weak ones that could be created in the gas phase.  相似文献   
6.
The adsorption capacities of commercial and Brazilian natural clays were evaluated to test their applications in wastewater control. We investigated the process of sorption of manganese(II) and cadmium(II) present in synthetic aqueous effluents, by calculating the adsorption isotherms at 298 K using batch experiments. The influence of temperature and pH on the adsorption process was also studied. Adsorption of metals was best described by a Langmuir isotherm, with values of Q 0 parameter, which is related to the sorption capacity, corresponding to 6.3 mg g− 1 for K-10/Cd(II), 4.8 mg g− 1 for K-10/Mn(II), 11.2 mg g− 1 for NT-25/Cd(II) and 6.0 mg g− 1 for NT-25/Mn(II). We observed two distinct adsorption mechanisms that may influence adsorption. At the first 5 min of interaction, a cation exchange mechanism that takes place at exchange sites located on (001) basal planes is predominant. This process is inhibited by low pH values. After this first and fast step, a second sorption mechanism can be related to formation of inner-sphere surface complexes, which is formed at edges of the clay. The rate constants and the initial sorption rates correlate positively with temperature in all studied systems, denoting the predominance of a physisorption process. The addition of complexing agents that are incorporated within the K10 structure, enhance metal uptake by the adsorbent. The results have shown that both Cd(II) and Mn(II) were totally retained from a 50 mg L− 1 solution when K10 grafted with ammonium pyrrolidinedithiocarbamate (APDC) was used as adsorbent.  相似文献   
7.
This paper reports the development of a facile and effective approach, based on the use of Zr-based metal-organic frameworks (UiO-66) sensor with micropores geometry, shape and particle morphology for the visual detection and removal of ultra-traces of some toxic metal ions such as Bi(III), Zn(II), Pb(II), Hg(II) and Cd(II). UiO-66 was used as selective carriers for accommodating hydrophobic chromophore probes such as dithizone (DZ) without coupling agent for sensitive and selective discrimination of trace level of toxic analytes. The developed UiO-66 sensor was utilized for the detection of ultra-traces of some toxic metal ions with the naked eye. The new sensor displays high sensitivity and selectivity of a wide range of detectable metals analytes up to 10−10 mol dm−3 in solution, in a rapid analyte uptake response (seconds). The developed sensor is stable, cost effective, easy to prepare, and would be useful for rapid detection and removal of ultra-traces of toxic metal ions in water samples.  相似文献   
8.
A laser induced breakdown spectrometry hyphenated with on-line continuous flow hydride generation sample introduction system, HG-LIBS, has been used for the determination of arsenic, antimony, lead and germanium in aqueous environments. Optimum chemical and instrumental parameters governing chemical hydride generation, laser plasma formation and detection were investigated for each element under argon and nitrogen atmosphere. Arsenic, antimony and germanium have presented strong enhancement in signal strength under argon atmosphere while lead has shown no sensitivity to ambient gas type. Detection limits of 1.1 mg L−1, 1.0 mg L−1, 1.3 mg L−1 and 0.2 mg L−1 were obtained for As, Sb, Pb and Ge, respectively. Up to 77 times enhancement in detection limit of Pb were obtained, compared to the result obtained from the direct analysis of liquids by LIBS. Applicability of the technique to real water samples was tested through spiking experiments and recoveries higher than 80% were obtained. Results demonstrate that, HG-LIBS approach is suitable for quantitative analysis of toxic elements and sufficiently fast for real time continuous monitoring in aqueous environments.  相似文献   
9.
A simple and easily scalable “wet” procedure was used to prepare nanocrystalline cerium oxide capable of destroying the toxic organophosphate pesticide parathion methyl. The synthetic procedure consists of the direct precipitation of cerous salt with aqueous ammonia in the absence of CO2. The prepared cerium oxide was able to decompose the organophosphate compounds both in nonpolar (e.g., heptane) and polar aprotic (e.g., acetonitrile) solvents. However, in solvents with hydrogen-bond donating ability, the –OH groups on the cerium oxide surface were solvated and inactivated. The preferential solvation model was used to express the experimental dependencies of the cerium oxide degradation efficiency on the composition of the water-acetonitrile mixture. In certain solvent systems, some empirical polarity scales, such as the alpha-scale or the Dimrodth-Richardt parameter ET(30), may be correlated with the degradation efficiency of cerium oxide.  相似文献   
10.
The distribution and speciation of toxic metals in industrial wastewater sludge (IWS) was investigated. In this work, the modified BCR three-stage sequential extraction procedure was applied to the fractionation of Cr Pb Ni, and Cd in untreated industrial wastewater sludge from industrial sites in Hyderabad (Pakistan). The extracts were analyzed using electrothermal atomic absorption spectrometry. The procedure was evaluated using a certified reference material for soil mixed with sewage sludge BCR 483. The results from the partitioning study indicate that more easily mobilized forms (acid exchangeable) of Cd were dominant. The oxidizable fraction was dominant for all four toxic metals. Metal recovery was good, with <4% difference between the total metal recovered through the extractant steps and the total metal determined after microwave digestion. Lixiviation tests (DIN 38414-S4) were used to evaluate the leaching of toxic species from IWS, and it was observed that levels of leachable toxic metals were low compared to the amount of metal extracted in the exchangeable fraction of the BCR protocol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号