首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
物理学   9篇
  2021年   5篇
  2020年   3篇
  2014年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The effects of moderate thermosonication (MTS) on the quality quartet: physico-chemical, microbial, nutritional and sensory qualities of orange juice (OJ) inoculated with Alicyclobacillus acidoterrestris (AAT) were studied during 24 days of storage at ambient and refrigerated temperatures. The bioactive compounds and antioxidant activity of OJ decreased with storage, while the pectin methyl esterase (PME) increased. Nonetheless, noticeable changes were observed from the 12th day of storage. There was no obvious (p > 0.05) variation in pH and total soluble solids. To determine the nutritional and microbial quality characteristics of OJ during storage, non-linear kinetic curves were successfully fitted with least square fitting polynomial and four-parameter log-logistic distribution models. The E-nose sensors succeeded in discriminating between the aroma of non-treated and treated OJ based on linear discriminant analysis (LDA). Furthermore, terpenes, alcohol and partially aromatic compounds were the main spoilage indicators of OJ during storage based on E-nose analysis and confirmed by HS-SPME-GC/MS analysis. Thus, MTS significantly extended the shelf life of the quality quartet of natural OJ at 4 °C. E-nose-GC/MS fusion offered odor fingerprints to AAT microorganisms that can be used as spoilage index without using traditional food analysis techniques. The proposed approach can be used as an alternative tool for rapid detection of spoilage microorganisms in OJ.  相似文献   
2.
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm−3) at 20, 40 and 60 °C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, °Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60 °C for 10 min, and the microbial population was completely inactivated at 60 °C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60 °C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.  相似文献   
3.
The object of this research was to appraise the physicochemical characteristics of almond milk and consumer acceptability after the thermosonication (TS) processing. The almond milk was subjected to TS processing (frequency: 40 kHz; power: 600 W; Temperature: 30, 45, and 60 °C; Time: 10, 20, 30, and 40 min) and pasteurization (for 60 s at 90 °C). After treatments, all samples were analyzed for bioactive compounds, antioxidant activities, microbial, enzymatic, and sensory attributes. The results showed a non-significant difference in total soluble solids and pH while TS processing at 45 and 60 °C significantly increased the cloudiness, viscosity, browning index, and color properties. TS processing increased the bioavailability of total phenolic, flavonols, flavonoids, condensed tannin contents, and antioxidant activity as compared to untreated and pasteurized samples. TS processing also significantly reduced the particle size distribution through acoustic cavitation. Microbial inactivation with TS at 60 °C resulted in ≥ 5 log reduction of total plate count and ≥ 4 log reduction of yeast & mold was achieved. The highest inhibition of lipoxygenase (LOX) and peroxidase (POD) were observed at 60 °C for 30 min. Moreover, the best sensorial properties were observed after TS processing at 60 °C. Thus; TS processing can increase the almond milk quality and safety as a viable substitute for thermal processing.  相似文献   
4.
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*, L*, hue angle (h0), and chroma (C) values, while minimum a* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min−1 (untreated) to 0.31 and 0.018 Abs min−1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.  相似文献   
5.
Ultrasounds are being considered an excellent alternative technology in juice preservation. Yet, when combined with heat treatment, the process seems to be further intensified. This work aimed to evaluate and compare the impact of ultrasounds and heat treatments, when applied alone or in combination, on Staphylococcus aureus survival in orange juice. Inoculated commercial pasteurized orange juice was treated at different times at 20, 30, 40, 50 and 60 °C. SEM analyses were applied to identify morphological changes in S. aureus cells appearance. The microbial inactivation data were fitted using two mathematical models, depending on the behaviour observed.Sonication at 20, 30, and 40 °C induced 4.02 ± 0.52, 3.80 ± 0.49 and 4.30 ± 0.74 log cycles reduction of S. aureus after treatments of 90, 60 and 60 min, respectively. The heat treatments at the same temperatures had no impact on S. aureus survival. When 50 and 60 °C were applied, more than 5-log reductions were attained for both thermosonication and heat treatments alone. A synergistic effect was observed between sonication and high temperatures. At 50 °C, the thermosonication reduced the treatment time from 60 to 35 min and the microbial load from 5.14 ± 0.08 to 10.76 ± 0.28 log cycles reduction, compared to heat treatment alone. Results from SEM images showed that cells undergo membrane damage during sonication exposure. This was observed by collapsed cells, cell disruption, and holes in the cell’s membrane.Thermosonication proved to be a viable alternative to thermal pasteurization of orange juice since milder treatments can be safely applied, improving the final product quality.  相似文献   
6.
Thermosonication (TS) impacts numerous characteristics of spores, such as morphology, cell metabolism, and stress resistance. However, relevant mechanisms need to be clarified. In the present study, the effect of TS treatment on Bacillus subtilis spores was investigated at phenotypic and proteomic levels. The results showed that TS treatment induced significant changes to spores in growth kinetics and morphology. A total of 167 differentially expressed proteins (DEPs) were obtained after TS treatment at 6.67 W/mL and 80 °C. Among these proteins, 80 were up-regulated, whereas 87 were down-regulated. These DEPs were classed into 20 functional categories. Enrichment analysis of the proteome revealed that the major categories were associated with metabolic functions, including energy metabolic processes, amino acids biosynthesis and metabolism, translation and ribosomal protein. In summary, B. subtilis spores showed alteration primarily in the proteins that were associated with metabolism under TS treatment. These findings could be applied to the development and optimization of TS-based sporicidal treatment.  相似文献   
7.
The use of thermosonication (TS) technique to preserve the qualities of fruit juice as an alternative to conventional pasteurization has attracted research interest in recent times. In the present study, freshly prepared hog plum juice (control), and the juice samples subjected to pasteurization (90 °C for 60 s) and thermosonication (40 kHz, 400 W at 40, 50 and 60 °C each for 5, 10, 20 and 30 min) were each analyzed for physicochemical, bioactive, microbial and sensory properties. After treatment, no significant changes in pH, total soluble solids and titratable acidity were observed. Notably, TS at 40 and 50 °C significantly (p < 0.05) improved color parameters, cloudiness and browning index. Furthermore, thermosonication increased ascorbic acid (11.40–18.55%), total phenolic content (17.98–18.35%), carotenoids (2.19–4.30%), flavonoids (10–16%) and antioxidant activity (32.52–48.5%) relative to the control. Both treatments significantly reduced the microbial count to non-detectable level after processing, while sensory attributes slightly improved. However, TS treatment at 60 °C decreased most of the quality parameters. Results showed that TS can improve quality, safety and economic potential of hog plum juice as a feasible alternative to pasteurization.  相似文献   
8.
The aim of this study was to evaluate thermosonication as an alternative method for the pasteurization of pulque in order to improve its shelf life and retain its quality parameters.Thermosonication was carried out at 50 °C using amplitudes of 75% (for 6 and for 9 min), 85% (for 4 and for 6 min), and 95% (for 3 and for 5 min). These were the optimal conditions found for processing pulque by thermosonication. Physicochemical (acidity, color, alcohol content, and sensory analysis) and microbiological (lactic acid bacteria and yeasts) parameters were determined during 30 days for storage at 4 ± 1 °C. Conventional pasteurization (63 °C, 30 min) and raw pulque were used as controls. According to the results, the shelf life of pulque was extended up to 24 days storage at 4 °C. After this time, the quality of beverage decreased, due that the microbial load increases. Thermosonication treatments at 75% and 85% showed a higher content of LAB (6.58–6.77 log CFU/mL) and yeasts (7.08–7.27 log CFU/mL) than conventional pasteurization (3.64 log CFU/mL of LAB and 3.97 log CFU/mL of yeasts) at 24 days of storage. Raw pulque demonstrated up to 7.77 log CFU/mL of yeasts and 7.51 log CFU/mL of LAB. Pulque processed by thermosonication exhibited greater lightness, sensory acceptance, a maximal acidity of 0.83 g/lactic acid, and an alcohol content of 4.48–4.95% v/v. The thermosonication process preserves sensory and physicochemical properties better than conventional pasteurization. Lactic acid bacteria such as Lactobacillus kefiri, Lactobacillus acidophilus, and Lactobacillus hilgardii and yeasts such as Saccharomyces cereviasiae were identified in thermosonicated pulque.  相似文献   
9.
Mung bean protein is considered a highly nutritive food ingredient, but its solution properties are not well defined. In this study, suspensions of mung bean protein isolate (MPI, 10%, w/v) were subjected to high intensity ultrasound (20 kHz, 30% amplitude) at varied durations (5, 10, 20, and 30 min) with controlled temperatures (30, 50, and 70 °C) to determine the effects of thermosonication treatment on physical properties of the protein solution. Results showed that thermosonication treatment significantly reduced the particle size and free sulfhydryl content of MPI in a time-dependent manner. Ultrasound increased surface hydrophobicity, and the exposure of nonpolar groups led to the formation of soluble aggregates. Changes in secondary structure of MPI were minimal at 30 and 50 °C but were significant at 70 °C. The dissociation of native components followed by reaggregation into soluble particles following ultrasound treatment at 70 °C resulted in remarkable improvements of protein solubility (>2 fold), clarity, and stability of the MPI suspensions. The findings indicated that thermosonication could be a promising technology for the processing of mung bean protein beverage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号