首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10002篇
  免费   1240篇
  国内免费   1105篇
化学   9109篇
晶体学   83篇
力学   347篇
综合类   10篇
数学   120篇
物理学   2678篇
  2024年   17篇
  2023年   152篇
  2022年   208篇
  2021年   264篇
  2020年   458篇
  2019年   307篇
  2018年   324篇
  2017年   329篇
  2016年   507篇
  2015年   475篇
  2014年   622篇
  2013年   896篇
  2012年   723篇
  2011年   760篇
  2010年   620篇
  2009年   708篇
  2008年   733篇
  2007年   695篇
  2006年   638篇
  2005年   457篇
  2004年   404篇
  2003年   322篇
  2002年   224篇
  2001年   187篇
  2000年   173篇
  1999年   158篇
  1998年   127篇
  1997年   137篇
  1996年   116篇
  1995年   92篇
  1994年   95篇
  1993年   63篇
  1992年   74篇
  1991年   54篇
  1990年   44篇
  1989年   33篇
  1988年   22篇
  1987年   25篇
  1986年   14篇
  1985年   17篇
  1984年   19篇
  1983年   9篇
  1982年   13篇
  1981年   9篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
In the pursuit to enlarge the library of polyimide materials for energy applications, new polyimide/MWCNTs composite films have been developed by MWCNTs-assisted polycondensation reaction of a hydroxyl and triphenylmethane-containing diamine with benzophenone tetracarboxylic dianhydride targeting to highlight their electrical storage capability as flexible electrodes in micro-supercapacitors (mSCs). The Fourier-transform infrared spectroscopy, proton nuclear magnetic resonance, UV–vis, fluorescence, and Raman spectroscopies were used to demonstrate the evolution of interfacial interactions between MWCNTs and the precursors (diamine monomer and intermediate polyamidic acid) and polyimide matrix that proved to be the origin of MWCNTs homogeneous dispersion. Thus, composite films incorporating 1, 3, 5, and 10 w.t.% MWCNTs were obtained and thoroughly investigated with regard to their morphology, mechanical behavior, thermal stability, and electrical conductivity. The electrochemical performance of these composites was first analyzed in a classical three-electrode cell by cyclic voltammetry and galvanostatic charge-discharge in both aqueous and organic electrolyte systems. By far, the best electrical storage capacity was obtained with the composite polyimide film containing 10% MWCNTs that was further used as both active material and current collector in a flexible symmetric mSC realized by a straightforward and low-cost procedure. In the attempt to better exploit the advantages of this composite film, it was layered with a graphite-containing paint and tested as an electrode in a flexible mSC, which provided satisfactory results. To our knowledge, this is the first report on the electrical charge storage capability of a polyimide/MWCNTs free-standing film as a flexible electrode in mSCs, which do not require time- and resource-consuming processing steps.  相似文献   
2.
A one-step Rh-catalyzed site-selective ortho-C−H alkynylation of perylene as well as naphthalene mono- and diimides is reported. A single step regioselective access to ortho-C−H alkynylated derivatives of these ryleneimides not only increases the step economy of the ortho-functionalization on these dyes but also provides a quick access route towards highly functionalized dyes that have potential optoelectronic applications. Increased solubility of tetra(triisopropylsilyl)acetylenyl PDIs in organic solvents greatly enhances their utility for further derivatization.  相似文献   
3.
A temperature control unit was implemented to vary the temperature of samples studied on a commercial Mobile Universal Surface Explorer nuclear magnetic resonance (MOUSE-NMR) apparatus. The device was miniaturized to fit the maximum MOUSE sampling depth (25 mm). It was constituted by a sample holder sandwiched between two heat exchangers placed below and above the sample. Air was chosen as the fluid to control the temperature at the bottom of the sample, at the interface between the NMR probe and the sample holder, in order to gain space. The upper surface of the sample was regulated by the circulation of water inside a second heat exchanger placed above the sample holder. The feasibility of using such a device was demonstrated first on pure water and then on several samples of bread dough with different water contents. For this, T1 relaxation times were measured at various temperatures and depths and were then compared with those acquired with a conventional compact closed-magnet spectrometer. Discussion of results was based on biochemical transformations in bread dough (starch gelatinization and gluten heat denaturation). It was demonstrated that, within a certain water level range, and because of the low magnetic field strength of the MOUSE, a linear relationship could be established between T1 relaxation times and the local temperature in the dough sample.  相似文献   
4.
5.
In this work, a continuum model is presented for size and orientation dependent thermal buckling and post-buckling of anisotropic nanoplates considering surface and bulk residual stresses. The model with von-Karman nonlinear strains and material cubic anisotropy of single crystals contains two parameters that reflect the orientation effects. Using Ritz method, closed form solutions are given for buckling temperature and post-buckling deflections. Regarding self-instability states of nanoplates and their recovering at higher temperatures, an experiment is discussed based on low pressurized membranes to verify the predictions. For simply supported nanoplates, the size effects are lowest when they are aligned in [100] direction. When the edges get clamped, the orientation dependence is ignorable and the behavior becomes symmetric about [510] axis. The surface residual stress makes drastic increase in buckling temperature of thinner nanoplates for which a minimum thickness is pointed to stay far from material softening at higher temperatures. Deflection of [100]-oriented buckled nanoplates is higher than [110] ones but this reverses at higher temperatures. The results for long nanoplates show that the buckling mode numbers are changed by orientation which is verified by FEM.  相似文献   
6.
The aim of this work was to determine the parameters that have decisive roles in microwave-assisted reactions and to develop a model, using computational chemistry, to predict a priori the type of reactions that can be improved under microwaves. For this purpose, a computational study was carried out on a variety of reactions, which have been reported to be improved under microwave irradiation. This comprises six types of reactions. The outcomes obtained in this study indicate that the most influential parameters are activation energy, enthalpy, and the polarity of all the species that participate. In addition to this, in most cases, slower reacting systems observe a much greater improvement under microwave irradiation. Furthermore, for these reactions, the presence of a polar component in the reaction (solvent, reagent, susceptor, etc.) is necessary for strong coupling with the electromagnetic radiation. We also quantified that an activation energy of 20–30 kcal mol−1 and a polarity (μ) between 7–20 D of the species involved in the process is required to obtain significant improvements under microwave irradiation.  相似文献   
7.
8.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
9.
《中国物理 B》2021,30(7):76103-076103
It has been a long-standing puzzling problem that some glasses exhibit higher glass transition temperatures(denoting high stability) but lower activation energy for relaxations(denoting low stability). In this paper, the relaxation kinetics of the nanoconfined D-mannitol(DM) glass was studied systematically using a high-precision and high-rate nanocalorimeter.The nanoconfined DM exhibits enhanced thermal stability compared to the free DM. For example, the critical cooling rate for glass formation decreases from 200 K/s to below 1 K/s; the Tg increases by about 20 K–50 K. The relaxation kinetics is analyzed based on the absolute reaction rate theory. It is found that, even though the activation energy E~*decreases,the activation entropy S~*decreases much more for the nanoconfined glass that yields a large activation free energy G~*and higher thermal stability. These results suggest that the activation entropy may provide new insights in understanding the abnormal kinetics of nanoconfined glassy systems.  相似文献   
10.
Infection of hosts by morbilliviruses is facilitated by the interaction between viral hemagglutinin (H-protein) and the signaling lymphocytic activation molecule (SLAM). Recently, the functional importance of the n-terminal region of human SLAM as a measles virus receptor was demonstrated. However, the functional roles of this region in the infection process by other morbilliviruses and host range determination remain unknown, partly because this region is highly flexible, which has hampered accurate structure determination of this region by X-ray crystallography. In this study, we analyzed the interaction between the H-protein from canine distemper virus (CDV-H) and SLAMs by a computational chemistry approach. Molecular dynamics simulations and fragment molecular orbital analysis demonstrated that the unique His28 in the N-terminal region of SLAM from Macaca is a key determinant that enables the formation of a stable interaction with CDV-H, providing a basis for CDV infection in Macaca. The computational chemistry approach presented should enable the determination of molecular interactions involving regions of proteins that are difficult to predict from crystal structures because of their high flexibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号