首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
化学   15篇
物理学   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2003年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The paper presents a new method based on simultaneous derivatization and air-assisted liquid–liquid microextraction (AALLME) for the extraction and preconcentration of some aliphatic amines prior to gas chromatography-flame ionization detection (GC-FID). Primary aliphatic amines are derivatized and extracted simultaneously by a fast reaction with butylchloroformate (derivatization agent/extraction solvent) under mild conditions. The mixture of butylchloroformate and aqueous sample solution is rapidly sucked into a 10-mL glass syringe and then is injected into a test tube with conical bottom and the procedure is repeated seven times. After centrifuging the resulted cloudy solution, the derivatized analytes in the sedimented phase are determined by GC-FID. The influence of main factors on the efficiency of derivatization/extraction procedure is studied. Under the optimal conditions, the enrichment factors (EFs) for aliphatic amines are obtained in the range of 248–360 and limits of detection (LODs) are between 0.30 and 2.6 μg L−1. The obtained extraction recoveries ranged from 50 to 72% and the relative standard deviation (RSD) was less than 4.8% for intra-day (n = 6) and inter-days (n = 4) precision. The method is successfully applied to determine some aliphatic amines in environmental water samples.  相似文献   
2.
Dynamic contrast enhanced (DCE) MRI is a widespread method that has found broad application in the imaging of the musculoskeletal (MSK) system. A common way of analyzing DCE MRI images is to look at the shape of the time-intensity curve (TIC) in pixels selected after drawing an ROI in a highly enhanced area. Although often applied to a number of MSK affections, shape analysis has so far not led to a unanimous correlation between these TIC patterns and pathology. We hypothesize that this might be a result of the subjective ROI approach. To overcome the shortcomings of the ROI approach (sampling error and interuser variability, among others), we created a method for a fast and simple classification of DCE MRI where time-curve enhancement shapes are classified pixel by pixel according to their shape. The result of the analysis is rendered in multislice, 2D color-coded images. With this approach, we show not only that differences on a short distance range of the TIC patterns are significant and cannot be appreciated with a conventional ROI analysis but also that the information that shape maps and conventional standard DCE MRI parameter maps convey are substantially different.  相似文献   
3.
Ping Tong  Lan Zhang  Yu He  Jintian Cheng 《Talanta》2010,82(4):1101-1106
In this paper, a rapid and effective method based on capillary zone electrophoresis (CZE) coupled with electrospray ionization mass spectrometry (ESI-MS) was established for the trace analysis of microcystin (MC) isomers in crude algae sample. The experimental conditions including the composition, acidity and concentration of buffer, separation voltage, injection time, and MS detection parameters were investigated in detail. A capillary separation system was as follows: a uncoated fused-silica capillary tube (50 μm i.d. × 90 cm), 40 mmol L−1 ammonium acetate solution (pH 9.86) as running buffer, 25 kV as separation voltage, 20 kV × 3 s water first and 20 kV × 20 s for sample injection. Mass analysis was performed in ESI source, with sheath gas temperature 150 °C, sheath gas pressure 10 psi, and sheath gas flow 6 L min−1. And sheath liquid was 7.5 mmol L−1 acetic acid in 50% isopropanol-water (3 μL min−1). Protonation and ammonium adduct molecular ions m/z 506.9 (MC-LR) and 532.0 (MC-YR) were used for the quantification of MCs. Under these conditions, two MCs were baseline separated within 9 min, the calibration curves were obtained in the range of 0.11-10.0 μg mL−1 and 0.16-10.5 μg mL−1 for MC-LR and MC-YR, respectively. Meanwhile, limits of detection were 0.05 and 0.08 μg mL−1 for MC-LR and MC-YR, respectively. The recoveries for the two MCs were in the range of 95.8-108%. The developed approach had been successfully applied to the analysis of MCs in crude algae samples.  相似文献   
4.
A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614+) and tetrakis(pentafluorophenyl)borate anion (TB) was employed within a water|P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. 137Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N′-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6 × 1011 at the w|P66614TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δα, with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δα of 2 and 8.2 × 107, respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass spectra obtained by the direct injection of an emulsified water–organic solvent mixture into an electron spray ionization mass spectrometer.  相似文献   
5.
Tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL) is an immunosurveillance cytokine that kills cancer cells but demonstrates little toxicity against normal cells. While investigating the TRAIL‐inducing imidazolinopyrimidinone TIC10, a misassignment of its active structure was uncovered. Syntheses of the two isomers, corresponding to the published and reassigned structures, are reported. The ability of each to induce TRAIL expression in macrophages was investigated and it was found that only the compound corresponding to the reassigned structure shows the originally reported activity; the compound corresponding to the published structure is inactive. Importantly, this structural reassignment has furnished a previously unknown antitumor pharmacophore.  相似文献   
6.
The lack of authentic standards represents a major bottleneck in the quantitative analysis of complex samples. Here we propose a quantitative structure and ionization intensity relationship (QSIIR) approach to predict the absolute levels of compounds in complex matrixes. An absolute quantitative method for simultaneous quantification of 25 organic acids was firstly developed and validated. Napierian logarithm (LN) of the relative slope rate derived from the calibration curves was applied as an indicator of the relative ionization intensity factor (RIIF) and serves as the dependent variable for building a QSIIR model via a multiple linear regression (MLR) approach. Five independent variables representing for hydrogen bond acidity, HOMO energy, the number of hydrogen bond donating group, the ratio of organic phase, and the polar solvent accessible surface area were found as the dominant contributors to the RIIF of organic acids. This QSIIR model was validated to be accurate and robust, with the correlation coefficients (R2), R2 adjusted, and R2 prediction at 0.945, 0.925, and 0.89, respectively. The deviation of accuracy between the predicted and experimental value in analyzing a real complex sample was less than 20% in most cases (15/18). Furthermore, the high adaptability of this model was validated one year later in another LC/MS system. The QSIIR approach is expected to provide better understanding of quantitative structure and ionization efficiency relationship of analogous compounds, and also to be useful in predicting the absolute levels of analogous analytes in complex mixtures.  相似文献   
7.

The properties and structures of terephthalyl chloride (TPC) modified poly(m‐phenylene isophthalamide) (PMIA) with TPC mole content in acylchloride from 5%–15% were studied in this paper. The composition and structure of the copolymer were determined by 1H NMR. The content of TPC moiety in the molecular chain was calculated. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) were used to analysis the thermal properties of TPC modified PMIA copolymer. The results show that by introducing TPC units in the PMIA molecular chain, PMIA copolymers with better thermal properties were prepared. With the increase of TPC content, the TPC modified PMIA exhibit increasing thermal stability. The pyrolysis process of the copolymer was detected by FTIR spectra. When the copolymers were pyrolyzed to 500°C, an aryl nitrile band at 2230 cm?1 appears in the FTIR spectrum. This means that at this temperature breakage of the amide bond occurred.  相似文献   
8.
The photosynthetic glycerolipids composition of algae is crucial for structural and physiological aspects. In this work, a comprehensive characterization of the photosynthetic glycerolipids of the diatom Stephanodiscus sp. was carried out by ultra performance liquid chromatography-electrospray ionization-quadrupole-time of flight mass spectrometry (UPLC-ESI-Q-TOF MS). By use of the MSE data collection mode, the Q-TOF instrument offered a very viable alternative to triple quadrupoles for precursor ion scanning of photosynthetic glycerolipids and had the advantage of high efficiency, selectivity, sensitivity and mass accuracy. Characteristic fragment ions were utilized to identify the structures and acyl compositions of photosynthetic glycerolipids. Comparing the abundance of fragment ions, it was possible to determine the position of the sn-glycerol-bound fatty acyl chains. As a result, four classes of photosynthetic glycerolipid in the extract of Stephanodiscus sp. were unambiguously identified, including 16 monogalactosyldiacylglycerols (MGDGs), 9 digalactosyldiacylglycerols (DGDGs), 23 sulfoquinovosyldiacylglycerols (SQDGs) and 8 phosphatidylglycerols (PGs). As far as our knowledge, this is the first report on global identification of photosynthetic glycerolipids, including lipid classes, fatty acyl composition within lipids and the location of fatty acids in lipids (sn-1 vs. sn-2), in the extract of marine microalgae by UPLC-ESI-Q-TOF MS directly.  相似文献   
9.
The characterization and authentication of fats and oils is a subject of great importance for market and health aspects. Identification and quantification of triacylglycerols in fats and oils can be excellent tools for detecting changes in their composition due to the mixtures of these products. Most of the triacylglycerol species present in either fats or oils could be analyzed and identified by chromatographic methods. However, the natural variability of these samples and the possible presence of adulterants require the application of chemometric pattern recognition methods to facilitate the interpretation of the obtained data. In view of the growing interest in this topic, this paper reviews the literature of the application of exploratory and unsupervised/supervised chemometric methods on chromatographic data, using triacylglycerol composition for the characterization and authentication of several foodstuffs such as olive oil, vegetable oils, animal fats, fish oils, milk and dairy products, cocoa and coffee.  相似文献   
10.
Macronutrient elements (C, N and P) and micronutrient elements (Fe, Co, Cu, Zn and Mn) are widely measured in their various physico-chemical forms in open ocean, shelf sea, coastal and estuarine waters. These measurements help to elucidate the biogeochemical cycling of these elements in marine waters and highlight the ecological and socio-economic importance of the oceans. Due to the dynamic nature of marine waters in terms of chemical, biological and physical processes, it is advantageous to make these measurements in situ and in this regard flow injection analysis (FIA) provides a suitable shipboard platform. This review, therefore, discusses the role of FIA in the determination of macro- and micro-nutrient elements, with an emphasis on manifold design and detection strategies for the reliable shipboard determination of specific nutrient species. The application of various FIA manifolds to oceanographic nutrient determinations is discussed, with an emphasis on sensitivity, selectivity, high throughput analysis and suitability for underway analysis and depth profiles. Strategies for enhancing sensitivity and minimizing matrix effects, e.g. refractive index (schlieren) effects and the important role of uncertainty budgets in underpinning method validation and data quality are discussed in some detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号