首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2010年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Results of detailed structural, dielectric, magnetic and magnetoelectric studies of (x)PbZr0.52Ti0.48O3-(1−x)Mn0.3Co0.6Zn0.4Fe1.7O4 composites where x=65, 70, 75 and 80 are shown in this work. Manganese substituted cobalt ferrites are known to exhibit large strain derivative (dx/dH) and on the other hand substitution of Zn in pure cobalt ferrite is known to enhance its permeability μ and permittivity ε. The choice of ferrite as Mn, Zn simultaneously substituted cobalt ferrite (MCZFO) is made keeping in view that for good magnetoelectric (ME) voltage coefficient the magnetostrictive constituent phase of the composite should have large strain derivative (dx/dH) along with large permittivity and permeability. It is shown here that although the dielectric transition temperature changes significantly with change in the mole ratio of the two component phases, magnetic transition temperature (much less compared to the bulk cobalt ferrite) is relatively non-responsive to the changing molar ratio of the two component phases. In the vicinity of the magnetic transition temperature we observed an anomaly in tan δ vs. T plots, which indicates a possible magnetoelectric coupling in the samples. Magnetoelectric voltage coefficient (αE) has been measured using static magnetoelectric method. Highest magnetoelectric voltage coefficient (αE=0.312 mV/cmOe) is obtained for sample 80:20 at HDC=1000 Oe.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号