首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  国内免费   1篇
化学   3篇
晶体学   1篇
力学   2篇
物理学   29篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
以扩散模型(Ds(γ)=D0×sγ)和凝聚模型(Pij(σ)=P0×(i×j)σ)为基础,对胶体体系随时间的演变、团簇大小分布及其标度关系、团簇的重均大小S(t)的变化规律以及模型对最终分形维数的影响四个角度进行了比较研究,发现扩散指数γ0和凝聚概率指数σ0对胶体的凝聚动力学过程有相似的影响.本文在较宽的γ和σ取值范围内,对胶体的凝聚动力学进行了模拟研究,对慢速凝聚向快速凝聚的转化机理作了定量分析,并进一步分析了在团簇-团簇凝聚(CCA)模型下,得到类似扩散置限凝聚(DLA)模型的凝聚体的物理意义,结果表明:(1)γ0代表了体系中团簇或单粒做"定向运动"而非无规则的布朗运动的情况.这种"定向运动"的推动力可能来自于大团簇产生的强"长程范德华力"、"电场力"等,或来自于体系边界处的外力场的作用.(2)当σ0时,体系成为先快后慢的慢速凝聚,这可能对应大团簇为一排斥中心,即胶体颗粒存在"排斥力场"的现象.(3)证实了团簇的重均大小在凝聚过程的早期按指数规律增长,而后期按幂函数规律增长的实验现象.模拟研究还表明,胶体体系的凝聚动力学过程,在σ0时是一个存在正反馈机制的非线性动力学过程,而在σ0时则体现出负反馈的特征.  相似文献   
2.
J.F. Zhu 《Surface science》2005,574(1):34-42
The adsorption of Pb onto a NiAl(1 1 0) single crystal surface at 300 K has been studied by Auger electron spectroscopy (AES), Low energy electron diffraction (LEED), molecular beam/surface scattering and single crystal adsorption calorimetry (SCAC). AES indicates a Stranski-Krastanov growth mode, i.e., Pb initially grows on NiAl(1 1 0) two-dimensionally until the first layer completes at 0.89 ML, where a superstructure is observed by LEED, followed by 3D islanding. Measurements of the Pb gas that does not stick indicate that Pb sticks on NiAl(1 1 0) with an initial probability of 0.99. The initial heat of adsorption of Pb on NiAl(1 1 0) is 249 ± 10 kJ/mol. Due to the repulsive interactions between Pb adatoms, the heat of adsorption decreases within the first layer to a value identical to the heat of sublimation of bulk Pb (195 kJ/mol), where it remains at higher coverages. This first application of adsorption calorimetry on such a thick sample (75 μm versus 0.2-8 μm previously) demonstrates that adsorption calorimetry can be extended to a wider range of surfaces, since this thickness can be achieved with nearly any single crystal material by simple mechanical thinning.  相似文献   
3.
In reactive plasma processing, species produced in the plasma reach the surface of a substrate and cause etching, deposition and surface modification through surface reactions. These reactions are characterized by the densities and energies of species incident on the surfaces. In order to realize nano-scale plasma processing, important species for plasma processing have been identified and characterized, and their behavior, not only in the gas phase, but also on the surface, have been clarified and controlled. One of the most critical parameters for insights into surface reaction kinetics of radicals is sticking and surface loss probability. On the basis of radical densities measured by various methods, the sticking and surface reaction loss probabilities have been compiled, and they enable the quantitative understanding of the kinetics of radicals on the surface in the plasma. In this article, the sticking and surface reaction loss probabilities measured thus far are reviewed focusing on fluorocarbon gas, silane gas and methane gas based plasma processes. The establishment of a smart plasma process and the development of an autonomous production device with control of radicals on the basis of insights into the surface reactions for nano-scale plasma processing are presented.  相似文献   
4.
The reaction of acetaldehyde with the Pd(1 1 0) surface has been studied using a molecular beam reactor, TPD and LEED. Below 270 K acetaldehyde sticks to the surface with a high initial probability (∼0.8), but no gas phase products evolve. When the reaction is run at >270 K, hydrogen evolves into the gas phase early in the reaction together with methane in a non-steady-state fashion, but above 300 K there is a very efficient steady-state catalytic reaction at the surface; this reaction is the decarbonylation of acetaldehyde to produce methane and carbon monoxide in the gas phase. This behaviour continues up to about 400 K. However, when acetaldehyde is dosed at 423 K, the reaction rate slowly evolves through a maximum to a very low catalytic rate. Upon carrying out reactor experiments at 473 K and above, the reaction mechanism changes to total dehydrogenation, and CO and H2 are produced at high steady-state rate, not withstanding the fact that carbon is continually being deposited onto the surface. This carbon does not appear to affect the reaction, which takes place on a surface with a c(2 × 2)-C layer present, since the extra carbon is lost from the reaction zone by diffusion into the bulk of the crystal.  相似文献   
5.
The adsorption and decomposition of NO on Pd(110)   总被引:1,自引:0,他引:1  
R. G. Sharpe  M. Bowker   《Surface science》1996,360(1-3):21-30
The sticking probability of nitric oxide (NO) on Pd(110) and the relative selectivity of the surface to nitrogen (N2) and nitrous oxide (N2O) production has been measured as a function of coverage and as a function of surface and gas temperatures using a molecular beam. It is found that, at low temperatures (<440 K), molecular adsorption occurs with an initial sticking probability of 0.40 ± 0.02, rising quickly to a maximum of about 0.48 ± 0.02 as coverage increases before falling towards saturation. Following adsorption at 170 K four distinct adsorption sites can be identified by subsequent TPD. Hence, if beaming occurs at a temperature above the TPD peak due to a given site, then that site cannot be populated and the saturation coverage is found to be reduced. At higher temperatures (440–650 K) the sticking probability is seen to decrease continuously as a function of coverage. At a given NO uptake, the sticking probability falls with temperature indicating that the rate of NO desorption is significant in this temperature range. In addition, dissociation occurs leading to the desorption of nitrogen and nitrous oxide leaving only oxygen adatoms on the surface. The oxygen adatoms poison further reaction but can be cleaned off, even at the lowest temperature at which dissociation occurs, by hydrogen or carbon monoxide. At the low temperature end of this range more nitrous oxide is produced than nitrogen but this ratio falls with temperature until, above 600 K, there is 100% selectivity to the production of nitrogen which we propose is due to the low lifetime of molecular NO on the surface. However, at such high temperatures, reaction only occurs on a few sites probably located at the few step edges present on the crystal.  相似文献   
6.
Periodic sticking motions can occur in vibro-impact systems for certain parameter ranges. When the coefficient of restitution is low (or zero), the range of periodic sticking motions can become large. In this work the dynamics of periodic sticking orbits with both zero and non-zero coefficient of restitution are considered. The dynamics of the periodic orbit is simulated as the forcing frequency of the system is varied. In particular, the loci of Poincaré fixed points in the sticking plane are computed as the forcing frequency of the system is varied. For zero coefficient of restitution, the size of the sticking region for a particular choice of parameters appears to be maximized. We consider this idea by computing the sticking region for zero and non-zero coefficient of restitution values. It has been shown that periodic sticking orbits can bifurcate via the rising/multi-sliding bifurcation. In the final part of this paper, we describe three types of post-bifurcation behavior which occur for the zero coefficient of restitution case. This includes two types of rising bifurcation and a border orbit crossing event.  相似文献   
7.
We generalize previous stochastic classical trajectory-ghost atom calculations for describing palladium deposition onto the Ni(111) surface between 0.1 and 0.5 monolayers. The growth evolves through two-dimensional islands. The islands are formed following the downward funneling mechanism. Surface temperature does not affect the island growth.  相似文献   
8.
This study proposes an improved physical model to predict sand deposition at high temperature in gas turbine components. This model differs from its predecessor (Sreedharan and Tafti, 2011) by improving the sticking probability by accounting for the energy losses during particle-wall collision based on our previous work (Singh and Tafti, 2013). This model predicts the probability of sticking based on the critical viscosity approach and collision losses during a particle–wall collision. The current model is novel in the sense that it predicts the sticking probability based on the impact velocity along with the particle temperature. To test the model, deposition from a sand particle laden jet impacting on a flat coupon geometry is computed and the results obtained from the numerical model are compared with experiments (Delimont et al., 2014) conducted at Virginia Tech, on a similar geometry and flow conditions, for jet temperatures of 950 °C, 1000 °C and 1050 °C. Large Eddy Simulations (LES) are used to model the flow field and heat transfer, and sand particles are modeled using a discrete Lagrangian framework. Results quantify the impingement and deposition for 20–40 μm sand particles. The stagnation region of the target coupon is found to experience most of the impingement and deposition. For 950 °C jet temperature, around 5% of the particle impacting the coupon deposit while the deposition for 1000 °C and 1050 °C is 17% and 28%, respectively. In general, the sticking efficiencies calculated from the model show good agreement with the experiments for the temperature range considered.  相似文献   
9.
The molecular adsorption of n-butane and the growth of n-butane adlayers on Pt(1 1 1) was investigated using molecular beam techniques, temperature-programmed desorption (TPD) and low-energy electron diffraction (LEED). It is found that as the surface coverage of n-butane increases, structural changes occur in the adlayer at surface temperatures near 98 K that are accompanied by changes in the binding energy and mobility of the adsorbed species. The film growth process can be divided into four distinct coverage regimes. At low coverages (θ<0.14 ML, where 1 ML is defined as one butane molecule per Pt atom) a disordered monolayer forms in which the butane molecules prefer to lie parallel to the surface in order to minimize their binding energy. At coverages from 0.14 to 0.20 ML, ordered regions develop within the monolayer in which the butane molecules also lie parallel to the surface. The binding energy in the ordered phase is lower than that in the disordered phase due to repulsive intermolecular interactions. A more densely-packed ordered phase begins to form at 98 K after the low-coverage ordered phase saturates at 0.20 ML. The experimental results suggest that the n-butane molecules tilt away from the surface in the high-coverage ordered phase. Finally, a disordered second layer phase forms after the high coverage ordered phase saturates at 0.35 ML. The molecules in the second layer are very mobile at 98 K and rapidly diffuse to the edges of the beam spot. Interchange of molecules between the second layer and ordered monolayer is found to govern the net rate of second layer diffusion at surface temperatures less than 133 K. The adsorption probability of n-butane on Pt(1 1 1) continuously increases with increasing coverage, with no significant dependencies on the structure of the n-butane adlayer. This finding indicates that the long-range arrangements and molecular orientations of a mobile alkane adlayer have a negligible influence on the intrinsic adsorption dynamics, suggesting that the energy transfer processes that facilitate adsorption are highly localized.  相似文献   
10.
The molecular/crystal orientation and morphology of active molecular structures is a key determinant for the function of nanoscaled organic devices, yet little is known regarding the processes that govern thin film growth. Here, we show that either sticking or diffusion anisotropy can control the growth depending on preparation conditions. This is illustrated by an investigation into the growth of sexiphenyl (6P) on the anisotropic TiO2(1 1 0)-(1 × 1) single crystal surface. The great differences in crystallite orientation and morphology observed are explained by the domination of the growth kinetics by either sticking or diffusion anisotropy depending on growth temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号