首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   6篇
力学   3篇
物理学   9篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2008年   2篇
  2007年   3篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  1996年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Abstract

The Project on an Antarctic Environmental Specimen Bank (Banca Campioni Ambientali Antartici—BCAA) began in 1994 in order to collect and classify samples from the Antarctic ecosystem to be used for future studies.

The objectives of the project are similar to the general aims of the Environmental Specimen Banks, but they specifically focus on the chemical aspects concerning the research activities of the Italian Project on the “Micropollutants Chemistry” (Sector “Chemical Contamination” of the Italian Antarctic Research Programme—PNRA).

During these first years the facilities suitable for storing a significant number of specimens (now over 2,000) at different temperatures (from ?30°C to ?150°C) and a database system, specifically designed for managing and consulting information concerning both the storage of samples and data on their chemical characterisation, have been developed.

In addition, a programme for validating the procedures of Antarctic organisms storage by checking the stability of some chemical parameters both in fresh and freeze-dried specimens has been developed.  相似文献   
2.
Biological specimens have to be prepared for imaging in the electron microscope in a way that preserves their native structure. Two-dimensional (2D) protein crystals to be analyzed by electron crystallography are best preserved by sugar embedding. One of the sugars often used to embed 2D crystals is trehalose, a disaccharide used by many organisms for protection against stress conditions. Sugars such as trehalose can also be added to negative staining solutions used to prepare proteins and macromolecular complexes for structural studies by single-particle electron microscopy (EM). In this review, we describe trehalose and its characteristics that make it so well suited for preparation of EM specimens and we review specimen preparation methods with a focus on the use of trehalose.  相似文献   
3.
原子吸收法测定土壤中钴时的背景干扰及消除   总被引:1,自引:1,他引:0  
  相似文献   
4.
The aim of this paper is to check the effect of artefacts introduced by focused ion beam (FIB) milling on the strain measurement by convergent beam electron diffraction (CBED). We show that on optimized silicon FIB samples, the strain measurement can be performed with a sensitivity of about 2.5 × 10−4 which is very close to the theoretical one and we conclude that FIB preparation can be suitable for such measurements in microelectronic devices.

To achieve this, we first used CBED and electron energy loss spectroscopy (EELS) which provide a procedure permitting an exact knowledge of the sample geometry, i.e. the thickness of both amorphous and crystalline layers. This procedure was used in order to measure the FIB-amorphized sidewall layer. It was found that if the FIB preparation is optimized one can reduce this amorphous layer down to around 7 nm on each side. Secondly different preparation techniques (cleavage, Tripod™ and FIB) permit to check if the surface damaged layer introduced by FIB influences the strain state of the sample. Finally, it was found that the damaged layer does not introduce measurable strain in pure silicon but reduces appreciably the quality of the CBED patterns.  相似文献   

5.
An accurate, ultra-sensitive and robust method for speciation of mono, di, and tributyltin (MBT, DBT, and TBT) by speciated isotope-dilution gas chromatography-inductively coupled plasma-mass spectrometry (SID-GC-ICPMS) has been developed for quantification of butyltin concentrations in cryogenic biological materials maintained in an uninterrupted cryo-chain from storage conditions through homogenization and bottling. The method significantly reduces the detection limits, to the low pg g(-1) level (as Sn), and was validated by using the European reference material (ERM) CE477, mussel tissue, produced by the Institute for Reference Materials and Measurements. It was applied to three different cryogenic biological materials-a fresh-frozen mussel tissue (SRM 1974b) together with complex materials, a protein-rich material (whale liver control material, QC03LH03), and a lipid-rich material (whale blubber, SRM 1945) containing up to 72% lipids. The commutability between frozen and freeze-dried materials with regard to spike equilibration/interaction, extraction efficiency, and the absence of detectable transformations was carefully investigated by applying complementary methods and by varying extraction conditions and spiking strategies. The inter-method results enabled assignment of reference concentrations of butyltins in cryogenic SRMs and control materials for the first time. The reference concentrations of MBT, DBT, and TBT in SRM 1974b were 0.92 +/- 0.06, 2.7 +/- 0.4, and 6.58 +/- 0.19 ng g(-1) as Sn (wet-mass), respectively; in SRM 1945 they were 0.38 +/- 0.06, 1.19 +/- 0.26, and 3.55 +/- 0.44 ng g(-1), respectively, as Sn (wet-mass). In QC03LH03, DBT and TBT concentrations were 30.0 +/- 2.7 and 2.26 +/- 0.38 ng g(-1) as Sn (wet-mass). The concentration range of butyltins in these materials is one to three orders of magnitude lower than in ERM CE477. This study demonstrated that cryogenically processed and stored biological materials are a promising alternative to conventional freeze-dried materials for organotin speciation analysis, because these are, at present, the best conditions for minimizing degradation of thermolabile species and for long-term archival. Finally, the potential of the analytical method was illustrated by analysis of polar bear (Ursus maritimus) and beluga whale (Delphinapterus leuca) liver samples that had been collected in the Arctic and archived at the Marine Environmental Specimen Bank. Significant concentrations of butyltin compounds were found in the samples and provide the first evidence of the presence of this class of contaminant in the Arctic marine ecosystem. Figure Eye catch image.  相似文献   
6.
In recent years numerous studies on the high strain rate behaviour of sheet materials using split Hopkinson tensile bar set-ups have been reported in literature. For these experiments mostly dogbone-shaped specimens are used. However, widely divergent specimen dimensions can be found. In the present study the influence of this specimen geometry on the test results is investigated experimentally. An extensive series of Hopkinson tests on a steel sheet material using different specimen geometries is performed. An advanced optical technique is used to obtain the true distribution of the deformation along the length of the specimen. Important issues such as the contribution of the deformation of the transition zones to the total deformation and the (non-)homogeneity of the strain in the specimen are thus determined. From the experiments it is clear that the influence of the specimen geometry on the observed behaviour cannot be neglected. It is shown that inconsistencies between the assumed and real specimen behaviour account for these differences. For the TRIP steel considered in the study, accurate deformation values are only guaranteed if the length to width ratio of the central zone is larger than 1.25 and if the radius of the transition zone is sufficiently small.  相似文献   
7.
8.
针对本科生在分析仪器学习中存在的困难,探索构建分析仪器实物学习平台,将抽象的仪器原理和功能学习实物化、具体化;以学习者为主体制作仪器标本和多媒体自学课件,激活了学生自身的学习、创新能力;经过4年的教学实践,说明新模式提高了学习效率和教学效果。  相似文献   
9.
Dilatometry is a thermo-analytical technique used to measure the expansion or shrinkage of materials during heating or cooling, whether or not in association with a phase transformation. A temperature correction procedure has been developed to correct for the temperature inhomogeneity that exists in an inductively heated specimen during the heating/cooling process and to represent the dilation as a function of a homogeneous temperature. As an example, taking an Fe-5.91 at.% Ni specimen and subjecting it to two different cooling rates, the temperature correction has been performed for the temperature range where the austenite to ferrite phase transformation takes place as well as for the pure austenite and ferrite phases close to the temperature range of the transformation.  相似文献   
10.
Modern scanning transmission electron microscopy (STEM) enables imaging and microanalysis at very high magnification. In the case of aberration-corrected STEM, atomic resolution is readily achieved. However, the electron fluxes used may be up to three orders of magnitude greater than those typically employed in conventional STEM. Since specimen contamination often increases with electron flux, specimen cleanliness is a critical factor in obtaining meaningful data when carrying out high magnification STEM. A range of different specimen cleaning methods have been applied to a variety of specimen types. The contamination rate has been measured quantitatively to assess the effectiveness of cleaning. The methods studied include: baking, cooling, plasma cleaning, beam showering and UV/ozone exposure. Of the methods tested, beam showering is rapid, experimentally convenient and very effective on a wide range of specimens. Oxidative plasma cleaning is also very effective and can be applied to specimens on carbon support films, albeit with some care. For electron beam-sensitive materials, cooling may be the method of choice. In most cases, preliminary removal of the bulk of the contamination by methods such as baking or plasma cleaning, followed by beam showering, where necessary, can result in a contamination-free specimen suitable for extended atomic scale imaging and analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号