首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   1篇
化学   2篇
物理学   26篇
  2023年   3篇
  2021年   2篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2008年   2篇
  2006年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
1.
A magnetic cotton/polyester fabric with photocatalytic, sonocatalytic, antibacterial and antifungal activities was successfully prepared through in-situ sonosynthesis method under ultrasound irradiation. The process involved the oxidation of Fe2+ to Fe3+ via hydroxyl radicals generated through bubbles collapse in ultrasonic bath. The treated samples were analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometry. Photocatalytic and sonocatalytic activities of magnetite treated fabrics were also evaluated toward Reactive Blue 2 decoloration under sunlight and ultrasound irradiation. Central composite design based on response surface methodology was applied to study the influence of iron precursor, pH and surfactant concentration to obtain appropriate amount for the best magnetism. Findings suggested the potential of one-pot sonochemical method to synthesize and fabricate Fe3O4 nanoparticles on cotton/polyester fabric possessing appropriate saturation magnetization, 95% antibacterial efficiency against Staphylococcus aureus and 99% antifungal effect against Candida albicans, 87% and 70% dye photocatalytic and sonocatalytic decoloration along with enhanced mechanical properties using only one iron rich precursor at low temperature.  相似文献   
2.
Ce doped ZnTiO3 as a novel catalyst with highly efficient and stable sonocatalytic activity was synthesized via an ultrasound-assisted sol–gel method using non-ionic surfactant Pluronic F127 as structure directing agent. Synthesized samples were characterized by using various techniques, such as XRD, TEM, SEM, EDX, ​XRF, BET, DRS, and PL, and their sonocatalytic activity studied toward degradation of p-Nitrophenol as a model organic compound. The synthesized mesoporous Ce/ZnTiO3 had mixed cubic–hexagonal phase with large surface area (118.2 m2 g–1) and narrow pore size distribution (4.9 nm). The effects of cerium concentration, calcination temperature, and calcination time on the structure and the sonocatalytic activity of Ce/ZnTiO3 were studied in detail. XRD results were suggested that the relation between the phase structure and the catalytic activity is considerable. Significant decrease in band-gap and PL intensity was observed with increasing the cerium concentration in the ZnTiO3. It became clear that the Ce/ZnTiO3 (0.81 mol%) shows high sonocatalytic activity compared with pure ZnTiO3 and other Ce/ZnTiO3 samples as well as commercial TiO2-P25. The possible mechanism for the enhanced sonocatalytic activity of Ce/ZnTiO3 was discussed in details. The electrical energy consumption was also considered during sonocatalytic experiments.  相似文献   
3.
Pure and samarium doped ZnO nanoparticles were synthesized by a sonochemical method and characterized by TEM, SEM, EDX, XRD, Pl, and DRS techniques. The average crystallite size of pure and Sm-doped ZnO nanoparticles was about 20 nm. The sonocatalytic activity of pure and Sm-doped ZnO nanoparticles was considered toward degradation of phenazopyridine as a model organic contaminant. The Sm-doped ZnO nanoparticles with Sm concentration of 0.4 mol% indicated a higher sonocatalytic activity (59%) than the pure ZnO (51%) and other Sm-doped ZnO nanoparticles. It was believed that Sm3+ ion with optimal concentration (0.4 mol%) can act as superficial trapping for electrons in the conduction band of ZnO and delayed the recombination of charge carriers. The influence of the nature and concentration of various oxidants, including periodate, hydrogen peroxide, peroxymonosulfate, and peroxydisulfate on the sonocatalytic activity of Sm-doped ZnO nanoparticles was studied. The influence of the oxidants concentration (0.2–1.4 g L−1) on the degradation rate was established by the 3D response surface and the 2D contour plots. The results demonstrated that the utilizing of oxidants in combination with Sm-doped ZnO resulting in rapid removal of contaminant, which can be referable to a dual role of oxidants; (i) scavenging the generated electrons in the conduction band of ZnO and (ii) creating highly reactive radical species under ultrasonic irradiation. It was found that the Sm-doped ZnO and periodate combination is the most efficient catalytic system under ultrasonic irradiation.  相似文献   
4.
The present study demonstrates ultrasound-induced cell injury using a nickel–titanium dioxide (Ni–TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni–TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm2 for 30 s led to an increased generation of hydroxyl (OH) radicals compared to nickel–titanium (Ni–Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni–TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm2 for 30 s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni–Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni–TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni–TiO2 alloy plates, indicating induction of apoptosis.  相似文献   
5.
Undoped and europium (III)-doped ZnO nanoparticles were prepared by a sonochemical method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analysis. The crystalline sizes of undoped and 3% Eu-doped ZnO were found to be 16.04 and 8.22 nm, respectively. The particle size of Eu-doped ZnO nanoparticles was much smaller than that of pure ZnO. The synthesized nanocatalysts were used for the sonocatalytic degradation of Acid Red 17. Among the Eu-doped ZnO catalysts, 3% Eu-doped ZnO nanoparticles showed the highest sonocatalytic activity. The effects of various parameters such as catalyst loading, initial dye concentration, pH, ultrasonic power, the effect of oxidizing agents, and the presence of anions were investigated. The produced intermediates of the sonocatalytic process were monitored by GC–Mass (GC–MS) spectrometry.  相似文献   
6.
Na5PV2Mo10O40 supported on nanoporous anatase TiO2 particles, TiO2–PVMo, was used as an efficient photocatalyst for photocatalytic degradation of different dyes by visible light using oxygen as oxidant. This catalyst showed a good catalytic activity in the sonocatalytic and sonophotocatalytic decomposition of different dyes in aqueous solutions. The TiO2–PVMo composite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure TiO2.  相似文献   
7.
Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer–Emmett–Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25–1.25 g/L), initial MB concentration (20–30 mg/L), initial solution pH (3–12), and ultrasonic output power (200–600 W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1 g/L of CdSe/GQDs, 20 mg/L of MB, pH of 9, and an output power of 200 W/L at 90 min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC–MS analysis.  相似文献   
8.
Fe3O4-graphene/ZnO@mesoporous-SiO2 (MGZ@SiO2) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60 min, 11, 50 mg/L, 1.00 g/L, and 40 W/m2, respectively. The MGZ@SiO2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO2 can be applied as a novel-design catalyst for the removal of organic pollutants from aqueous solutions.  相似文献   
9.
Polyoxometalates (POM) supported on zirconia, H3PW12O40/ZrO2, were prepared by incorporating polyphosphotungstate into a zirconia matrix via sol-gel technique that involving the hydrolysis of zirconium (IV) n-butoxide, Zr (n-OBu)4, as the ZrO2 source. This insoluble and readily separable catalyst was characterized by using XRD, FT-IR, SEM, and UV diffuse reflectance spectroscopy (UV-DRS), indicating that the polyphosphotungstate was chemically attached to the zirconia supports, and primary Keggin structure remained intact. The photocatalytic and sonocatalytic activity of the supported polyphosphotungstate was tested via degradation of different dyes in aqueous solutions. The POM-ZrO2 nanocomposite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure ZrO2.  相似文献   
10.
(5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, as a high effective sonocatalyst, was prepared using sol-gel and calcination method. Then it was characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). In order to evaluate the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, the sonocatalytic decomposition of ametryn was studied. In addition, some influencing factors such as different Ti/Ta molar ratios on the sonocatalytic activity of the prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder, catalyst added amount with ultrasonic irradiation time and used times on the sonocatalytic decomposition efficiency were examined by using ion chromatogram determination. The experimental results showed that the best sonocatalytic decomposition ratio of ametryn were 77.50% based on the N atom calculation and 95.00% based on the S atom calculation, respectively, when the conditions of 10.00 mg/L initial concentration, 1.00 g/L prepared (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) powder (Ti/Ta = 1.00:0.25 heat-treated at 550 °C for 3.0 h) added amount, 150 min ultrasonic irradiation (40 kHz frequency and 300 W output power), 100 mL total volume and 25–28 °C temperature were adopted. Therefore, the (5.0%)Er3+:Y3Al5O12/Pt-(TiO2-Ta2O5) composite nanoparticles could be considered as an effective sonocatalyst for decomposition of ametryn in aqueous solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号