首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   1篇
  国内免费   2篇
化学   5篇
力学   8篇
综合类   1篇
数学   3篇
物理学   37篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   5篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有54条查询结果,搜索用时 312 毫秒
1.
用相位调制方法测量光盘盘基应力双折射的精度分析   总被引:4,自引:2,他引:2  
朱莉  李锡善 《光学学报》1995,15(9):258-1265
偏振相位调制方法是测量微小双折射的一种高精度检测方法。本文系统全面地分析了以PMCSA结构形式测量光盘盘基应力双折射的相位调制方法中,由各种误差源造成的对测试结果的影响。  相似文献   
2.
Laser diodes have the features of a single-mode operation and a frequency tunability. Holographic interferometry is described for investigating the vibrating amplitude and phase with a frequency-modulated laser diode. Sinusoidal wavelength change by varying laser injection current produces the sinusoidal phase modulation of relative phase difference between the reference and vibrating object paths. Holograms are made by time-average exposure of three-type recording modes with a laser diode. The phase of vibrating object is extracted from the measurements of Bessel-type fringe irradiances in three kinds of time-average holographic reconstruction. Experimental results of phase and amplitude for a vibrating cantilever object are shown.  相似文献   
3.
A method for measuring external diameters of metal cylinders is proposed in which a sinusoidally vibrating interference pattern (SVIP) of 100-μm period is used as an exact scale. Lights from the end-points of a metal cylinder are extracted with a spatial filtering in an imaging system to form a cross-sectional image of the metal cylinder. On the image a sinusoidally phase-modulated signal owing to the SVIP is detected with a CCD image sensor to measure the phases of the SVIP at the two end-points of the cylinder. The coordinates of the two end-points are obtained from the phases at the two end-points, the phase distribution of the SVIP, and the coordinates of the pixels of the CCD image sensor. Metal cylinder diameters of 7.99, 8.00, and 9.00 mm are measured along their length directions with an error less than 1 μm.  相似文献   
4.
We propose a sinusoidal wavelength-scanning interferometer for measuring thickness and surface profile of a thin film. The interference signal contains phase modulation amplitude Z and phase $aL which are related to the positions and profiles of the reflecting surfaces, respectively. By reducing the difference between the detected signal and the estimated signal using the multidimensional nonlinear least-squares algorithm, we estimate values of Z and $aL. Experimental results show that the front and rear surfaces of a silica glass plate of 20 $mUm-thickness could be measured with an error less than 10 nm.  相似文献   
5.
In this paper we use a superluminescent diode (SLD) as the light source of an interferometer and extract a narrow spectrum from a wide spectrum of the SLD with a Fabry-Perot Etalone (FPE). By varying sinusoidally the distance between the two mirrors of FPE, the central wavelength of the narrow spectrum is scanned sinusoidally. The distance between the mirrors is exactly set by a feedback control system, and sinusoidal phase-modulated SLD light that has a large scanning width of about 10 nm can be obtained with high stability and spatial uniformity. The phase of the interference signal has two different components. One is amplitude Zb of sinusoidal phase modulation, which is proportional to the optical path difference (OPD) and the scanning width. The other is conventional phase α, which provides a fractional value of the OPD in the range of the wavelength. By combining the two values of the OPD obtained from Zb and α, an exact OPD larger than the wavelength can be measure with ment accuracy in α. Characteristics of the interferometer are made clearly through step-profile measurements.  相似文献   
6.
Control volume based finite element method (CVFEM) is applied to simulate H2O based nanofluid radiative and convective heat transfer inside a porous medium. Non-Darcy model is employed for porous media. Influences of Hartmann number, nanofluid volume fraction, radiation parameter, Darcy number, number of undulations and Rayleigh number on nanofluid behavior were demonstrated. Thermal conductivity of nanofluid is estimated by means of previous experimental correlation. Results show that Nusselt number enhances with augment of permeability of porous media. Effect of Hartmann number on rate of heat transfer is opposite of radiation parameter.  相似文献   
7.
8.
The wake of a sinusoidal wavy cylinder with a large spanwise wavelength λ/Dm (=3.79–7.57) and a constant wave amplitude a/Dm=0.152, where Dm is the mean diameter of the cylinder, is investigated using three dimensional (3D) large eddy simulation (LES) at a subcritical Reynolds number Re=3×103, based on incoming free-stream velocity (U) and Dm. Attention is paid to assimilating the effects of λ/Dm on the cylinder wake, including vortex shedding frequency, spanwise vortex formation length, streamwise velocity distribution, flow separation angle, 3D vortex structure, and turbulent kinetic energy (TKE) distribution. Based on the predominant role of λ/Dm in the near wake modification, three regimes are identified, i.e., regime I at λ/Dm<6.0, regime II at λ/Dm≈6.0 and regime III at λ/Dm>6.0. A dramatic decrease in fluid forces is observed at λ/Dm=6.06, about 16% and 93% reduction in time-averaged drag and fluctuating lift, respectively, compared to those of a smooth cylinder. We identified, for the first time, an optimum λ/Dm (=6.06) for the wavy cylinder with relatively large λ/Dm (>3.5) in the subcritical flow regime. The underlying mechanisms of force reduction are discussed, including the flow characteristics at the three λ/Dm regimes. A comparison is also made between the results of λ/Dm effects on the near wakes of a circular and a square cylinder.  相似文献   
9.
Linear stability analysis has shown that viscoelastic creeping flow of an Oldroyd-B liquid through a sinusoidal channel is unstable to stationary, wall-localized and short wavelength perturbations [B. Sadanandan, R. Sureshkumar, Global linear stability analysis of non-separated viscoelastic flow through a periodically constricted channel, J. Non-Newtonian Fluid Mech. 122 (2004) 55]. In this work, time-dependent simulations are performed to determine the nonlinear evolution of finite amplitude disturbances in the post-critical flow regime. It is shown that a nonlinear transition, which is facilitated by a supercritical pitchfork bifurcation, establishes a finite amplitude state (FAS) in which the average polymer stretch is highly modulated. The maximum normal stress, observed at the channel nip, can increase by up to approximately 100% when the Weissenberg number, defined as the ratio of the fluid relaxation time to an inverse characteristic shear rate, is increased by only 10% beyond its critical value. This is attributed to the amplification of configurational perturbations by the base flow shear rate, which attains its maximum at the channel nip. The effect of finite chain extensibility on the critical condition and nonlinear instability is investigated using the FENE-CR model. The stabilizing effect of finite extensibility can be expressed through a renormalization of the Weissenberg number by accounting for the screening effect of the nonlinear force law on the transmission of configurational perturbations to polymeric stress. The principal features of the FAS are qualitatively model-independent. The FAS exhibits a small, but numerically perceptible increase in the friction factor as compared to the base flow. The implication of the findings on the experimentally observed flow resistance enhancement phenomenon in viscoelastic creeping flows through converging/diverging geometries is discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号