首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
化学   2篇
物理学   4篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
采用“预制层硒化法”制备CuIn1-xGaxSe2 (CIGS)薄膜. 基于自主设计的“双层管式硒化装置”, 通过控制硒蒸气浓度优化退火工艺, 研究硒蒸气浓度对薄膜光电性能的影响. 利用俄歇电子能谱(AES)和X射线衍射分析(XRD)等手段对不同硒浓度氛围下生成的CIGS薄膜的成分和物相进行表征, 并在AM1.5、1000 W·m-2的标准光照条件下比较相应CIGS电池器件的输出性能. 实验结果表明: 饱和硒蒸气下退火得到的样品, 基底钼膜遭到严重腐蚀破坏, 失去背电极功能; 在低浓度硒气氛下退火不能有效消除CIGS薄膜的偏析和缺陷, 以致光电转换效率低; 而在无硒惰性氛围下退火的样品, 生成了物相均一化的CIGS薄膜, 由此制备的CIGS电池取得了8.5%的转换效率.  相似文献   
2.
A low-cost non-vacuum process for fabrication of CuInSe2 (CIS) films by solvent-free mechanochemical method and spin-coating process is described. First, highly monodisperse Cu, In oxides nanoparticles are synthesized via a facile, solvent-free route, which is the first applied in the CIS solar cells. Second, the oxide particulate precursors are deposited in a thin layer by spin-coating technique. Finally, the dry layers are sintered into CIS thin films with composition control by sequential reduction and selenization. Through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), it is found that near stoichiometric CIS films with a micron-sized dense grains are obtained in our work. Three types of mixed nitrates are used to fabricate oxides, the influence of the degree of mixing on the CIS films have been investigated.  相似文献   
3.
The aim of this work was to study the influence of selenization temperature on the morphological and structural properties of CuIn1−xGaxSe2 (CIGS) polycrystalline thin films prepared by a two-step method. The compound and metallic precursors were deposited sequentially using GaSe, InSe and Cu sources by thermal evaporation. These identical InSe/Cu/GaSe precursors are then selenized with Se vapor in a vacuum system. All the CIGS films showed chalcopyrite structure and presence of secondary phases observed at low temperatures. High temperature treatment led to better crystalline and an increase in grain size. Solar cell devices are fabricated and JV measurements performed under AM1.5 global solar spectra conditions at 25 °C are presented.  相似文献   
4.
《Current Applied Physics》2020,20(8):967-972
A Cu2ZnSnSe4 (CZTSe) photovoltaic absorber thin films were prepared using a 2-step selenization process on a Ti substrate including a Na precursor layer and a Na-free Ti substrate, and the effect of Na on the solar cell performance was compared. A CZTSe flexible solar cell fabricated on a Ti foil substrate exhibited an efficiency of 3.06%, which was less than half that of a solar cell fabricated on a soda lime glass substrate. This was attributed to the absence of Na and severe Zn crowding near the back contact. By depositing a 100‐nm-thick sodalime glass thin film on a Ti substrate to supply Na, the efficiency increased up to 5.59%. In the Na-doped CZTSe absorber layer grown on the Ti substrate, the back crowding of Zn was eliminated and the upper part of the absorption layer was converted to a Zn-rich environment, which prevented the formation of CuZn antisite defects.  相似文献   
5.
A novel technique for growth of high quality Cu2ZnSnSe4 (CZTSe) thin films is reported in our work. The CZTSe thin films were fabricated onto Mo layers by co-electroplating Cu-Zn-Sn precursors followed by annealing in the selenium vapors at the substrate temperature of 550 °C. The morphology and structure of CZTSe thin films were characterized using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and Raman scattering spectrum, respectively. The results revealed that the single phase was in the CZTSe thin films, and the other impurities such as ZnSe and Cu2SnSe3 were not existed though they were difficult to distinguish both from EDS and XRD.  相似文献   
6.
New synthetic methods, based on H-phosphonate chemistry, have been developed for functionalization of oligonucleotides and for the preparation of various nucleotide analogues bearing sulfur and selenium at the phosphorus center.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号